ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Since 2004, a continuous Global Positioning System (GPS) network has been operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) to investigate active tectonic processes in Italy and the surrounding regions, which are still largely debated. This important infrastructure is known as Rete Integrata Nazionale GPS (RING) network, and it consists of about 130 stations that are deployed all over Italy. The development and realization of a stable GPS monumentation, its integration with seismological instruments, and the choice of both satellite and internet data transmission, make this network one of the most innovative and reliable CGPS networks in the world. The technologically advanced development of the RING network has been accompanied by the development of different data processing strategies, which are mainly dependent on the use of different GPS analysis software. The different software-related solutions are here compared at different scales for this large network, and the consistency is evaluated and quantified within an RMS value of 0.3 mm/yr.
    Description: Published
    Description: 39-54
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: open
    Keywords: Geodesy ; Seismotectonics ; CGPS network ; GPS data analysis ; Central Mediterranean ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Since 1999 we have repeatedly surveyed the Central Apennines by means of a dense survey style geodetic network (CAGeoNet) consisting in 123 benchmarks distributed in an area of ~180 x 130 km extended from the Tyrrhenian Sea to the Adriatic Sea with an average inter-site distance of 3-5 km. The network is located across the main seismogenic structures of the region, able to generate destructive earthquakes. Here we show the horizontal GPS velocity field of the CaGeoNet and the available continuous GPS (CGPS) stations in this region, that are estimated from their position time series in the time span 1999-2007. Data have been analyzed using Bernese and Gamit software and the two solutions have been rigorously combined to minimize software-dependent systematic errors. We analyze the strain rate field, which shows a region characterized by extension located along the axis of the Apennines chain, with values ranging from 2 to 66 10-9 yr-1 and a relative minimum of 20 10-9 yr-1 located in the L’Aquila basin area. Our velocity field represents an improved estimation of the ongoing elastic inter-seismic deformation of central Apennines in particular of the L’Aquila earthquake of April 6th, 2009 area.
    Description: Published
    Description: 1039-1049
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Central Apennines, GPS velocity field, solutions combination, GPS surveys ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We probe the feasibility of integrating GPS and Synthetic Aperture Radar deformation rates within the seismic hazard models of the central Apennines (Italy), exploiting data from over 100 GPS stations and the ~20- year long ERS and ENVISAT SAR image archive. We then use a kinematic finite element model to derive the long-term strain rates, as well as earthquake recurrence relations. In turn these are input to state-of-the-art probabilistic seismic hazard models, the output of which is validated statistically using data from the Italian national accelerometric and macroseismic intensity databases.
    Description: Published
    Description: 23-27
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: restricted
    Keywords: Seismic Hazard ; InSAR ; Central apennines ; Ground deformation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Several thousands GPS/GNSS permanent stations, managed by both scientifc and cadastral institutions, are now available on the European plate and its boundaries. Data coming from these stations provide unprecedented spatial and temporal coverage of time-dependent deformation signals essential to understand the fundamental physics that govern tectonic deformation and faulting. The National Earthquake Center (Centro Nazionale Terremoti, CNT) of the National Institute of Geophysics and Volcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) in Italy, is the Italian leader institution for the collection, management and scientific analysis of Global Positioning Systems (GPS) measurements. Distinct analysis centers independently and routinely process and analyze data using high-quality geodetic software (Bernese, Gamit, Gipsy) to measure the movements of 〉1000 points spanning the Eurasian plate and its boundaries. The goal of this project is to offer high-quality geodetic products, increase their accessibility to the European scientific community and promote the inter-disciplinary data exchange through a multi-level, user-friendly data gateway. These activities will be performed in strict contact with the GNSS Working Group of the EPOS project (http://www.eposeu.org) that is proposing to integrate, archive and distribute data, metadata and products for available GNSS stations on the European plate.
    Description: Published
    Description: Vienna, Austria
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: GPS velocity field ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The contribution of space geodetic techniques to interseismic velocity estimation, and thus seismic hazard modelling, has been recognized since two decades and made possible in more recent years by the increased availability and accuracy of geodetic measurements. We present the preliminary results of a feasibility study performed within the CHARMING project (Constraining Seismic Hazard Models with InSAR and GPS), funded by the European Space Agency (ESA). For a 200 km x 200 km study area, covering the Abruzzi region (central Italy) we measure the mean surface deformation rates from Synthetic Aperture Radar and GPS, finding several local to regional deformation gradients consistent with the tectonic context. We then use a kinematic finite element model to derive the long-term strain rates, as well as earthquake recurrence relations. In turn these are input to state-of-the-art probabilistic seismic hazard models, the output of which is validated statistically using data from the Italian national accelerometric and macroseismic intensity databases.
    Description: Published
    Description: 373-377
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: open
    Keywords: Seismic Hazard ; Central Apennines ; InSAR ; Interseismic ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-10
    Description: In November 2002 a submarine gas eruption started offshore 3 Km east of Panarea island (Aeolian Island) on top of a shallow rise of 2.3 km2 surrounded by islets forming a small archipelago. This event has posed new concern on a volcano generally considered extinct. Panarea island and its archipelago (~ 3.3 km2) are the emergent portion of submarine stratovolcano more than 2000 m high and 20 Km across; exhalative activity due to a shallow hydrothermal system is well known since historical times. To monitor and study ground deformation associated with anomalous gas emission, a local GPS network (PANAREA) was designed, set up and measured during time span December 2002 - October 2006. The network consists of nine sites (six constructed after 2002) located on Panarea and on the islets. GPS data analysis was performed combining episodic campaigns of Panarea and other local networks located in the Aeolian area, carried out between 1995 and 2006, and data of continuous European and Italian sites. The results show at Panarea volcano two distinct crustal domains characterized by different kinematics and styles of deformation. The merging of GPS and structural data suggest the relationship among gas vent distribution, submarine volcanological structures and ground deformations. The actual distribution of the estimated strain-rate is consistent with the structural setting.The general subsidence and shortening in the islets area can be interpreted as the response of the surface to the variation of the hydrothermal system reservoir which is progressively reducing its pressure after the gas eruption. A simple first order approach to the modelling of the hydrothermal system is the use of Okada sources.To evaluate the coupled thermo-hydro-mechanical processes going on in Panarea, a two-step model will be implemented. The model first involves the simulation of pore pressure and temperature changes due to fluid circulation. Then the mechanical response of the porous rock is calculated based on the linear theory of poro-elasticity.
    Description: Unpublished
    Description: Reykjavík, Iceland
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: open
    Keywords: GPS, monitoring, Aeolian Islands ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...