ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-03
    Description: Istituto Nazionale di Geofisica e Vulcanologia; CNR-IGAG, Università degli Studi di Roma TRE, DiMSAT- Università degli Studi di Cassino;
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Rilievi geologici ; sequenza sismica ; dell’Aquilano ; 6 aprile 2009 ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-03
    Description: Il 6 Aprile 2009 un terremoto di Ml=5.8 (Mw=6.2) ha colpito L’Aquila e la media valle dell’Aterno in Abruzzo. In questo lavoro presentiamo in maniera sintetica i rilievi geologici effettuati in campagna dal gruppo di lavoro EmerGeo a seguito della sequenza sismica aquilana. Le attività di rilevamento condotte sono consistite principalmente nella verifica, definizione e caratterizzazione delle deformazioni cosismiche superficiali osservate lungo le strutture tettoniche note in letteratura; sono stati inoltre rilevati e riportati altri effetti cosismici locali (fratture su asfalto, frane e scivolamenti) non direttamente collegati alla presenza di strutture tettoniche. In totale sono stati rilevati oltre 300 punti di osservazione su una porzione di territorio estesa circa 900 km2. L’analisi preliminare dei rilievi effettuati indica che le rotture osservate lungo la faglia di Paganica, per la continuità e le caratteristiche, rappresentano l’espressione superficiale della faglia responsabile dell’evento del 6 aprile 2009, e che le rotture lungo le faglie di Bazzano e di Monticchio-Fossa possono rappresentare l’espressione in superficie di una struttura antitetica riattivata durante l’evento.
    Description: Published
    Description: 1-79
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: coseismic ruptures ; Central Apennines ; April, 6 2009 earthquake ; Aterno valley ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The occurrence of the Mw 6.3, April 6, 2009 earthquake has highlighted how critical is the knowledge of the location and of the characteristics of the active faults in a seismic region. This is true not only as a contribution to the seismic hazard assessment but also for the local planning of residential areas, plants and infrastructures. The 2009 earthquake occurred on the Paganica normal fault (PF hereinafter) and produced 3 km-long, maximum 0.1 m-high surface ruptures along its central section, as well as secondary slip along nearby tectonic structures and secondary effects such as liquefaction and landslides over a wide area.We will show the preliminary results from the analysis of a “special” site where an amazing “coseismic” trench, caved by the overpressure produced by the broken pipe of an aqueduct, provided the exposure of a 30-m wide fault zone of the PF, as well as from other cuts crossing the most recent scarp of the PF
    Description: Published
    Description: Palazzo Congressi della Stazione Marittima, Molo Bersaglieri 3, Trieste, ITALY
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: L'Aquila April 6, 2009 earthquake ; Seismic Hazard ; Paganica Fault ; paleoearthquakes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Several fundamental questions concerning: i) the geophysical and geochemical processes controlling normal faulting and earthquake ruptures during moderate-to-large seismic events and ii) the low angle normal fault paradox, still need to be fully answered. In this work we aim to present an example of low angle normal fault (Alto Tiberina Fault) located in the Northern Apennines (Italy) showing conclusive evidence of its seismic activity. This fault is a likely target of an international project: the MOLE (Multidisciplinary Observatory and Laboratory of Experiments) Drilling project. Indeed, under the auspices of the International Continental Scientific Drilling Program a workshop is being organized in Italy next spring 2008, to promote the creation of an international multidisciplinary team of scientists, to discuss the project in detail and also to prepare a full proposal for ICDP. This project wants to investigate the inner structure of normal faults in Central Italy to get physical constraints on the processes controlling faulting and earthquake mechanics. The Umbria-Marche sector of Northern Apennines offers a unique opportunity to reach a complex system of normal faults among which we selected two possible targets. 1) The active Colfiorito fault dipping about 45° toward SW which Tiberina low angle normal fault dipping 15°-25° towards ENE, which moves through a combination of aseismic creep and repeating microearthquakes. Drilling the Colfiorito active fault at a depth of about 2-3 km allows targeting the high coseismic slip patch of the 1997 earthquake M=6 seismogenic structure. Drilling the Alto Tiberina Fault at a depth of nearly 5-6 km will target a micro seismicity source. We aim to collect new original data through borehole logging and sampling and to set up a permanent observatory at depth for a multidisciplinary monitoring to characterize these active normal fault zones. This will allow to understand how such faults behave and to create more realistic models of: earthquake nucleation, seismicity pattern, stress interactions and earthquake triggering at local and regional scale. Both drilling targets present relevant technical issues that should be discussed from different points of view before selecting the starting drilling site.
    Description: Published
    Description: San Francisco, CA (USA)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Drilling ; Alto Tiberina Fault ; Seismicity ; Stress ; North Apennines ; Central Italy ; LANF ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Mw6.3, April 6, 2009 earthquake occurred on the previously identified Paganica normal fault and produced a 3 km-long co-seismic surface rupture along its northern section, with few centimeters of vertical displacement. Extensive 1:10,000-scale geological and geomorphological mapping has been carried out, focusing on the characterization of the long-term expression of the Paganica Fault at the surface. The field mapping was integrated by observations, made on 1:33,000 scale aerial photographs (GAI), 5-m-resolution Digital Elevation Model and standard morphometric derivatives (hill-shaded and slope angle maps, Spatial Analyst™). Particular attention was devoted to the study of the continental deposits and landforms affected by cumulative offset with the aim to reconstruct the Quaternary deformational history of the fault. The fault runs for a total length of 20 km and, along with antithetic faults on its hanging-wall, forms the graben of the Middle Aterno River Valley. The whole fault system and the variable setting of deformation affecting the continental deposits at the surface were identified. The Paganica long-term morphologic signature is represented by a set of prominent scarps formed by the tectonic juxtaposition of late Pliocene-middle Pleistocene and late Pleistocene alluvial deposits, and by lower scarps in late Pleistocene-Holocene deposits. In addition, evident Quaternary erosional and depositional paleosurfaces were recognized and sampled for 14C and OSL (Optically Stimulated Luminescence) and tephra chronology dating for long-term slip-rate calculations. This study resulted helpful to locate four paleoseismological investigations (see Pantosti et al. talk) and to provide the appropriate context for correctly interpret the depositional bodies outcropping on the trench walls. These paleoseismological investigations evidenced the presence of repeated late Pleistocene-Holocene activity and allowed for slip-rate estimation at a shorter time-scale. Such estimates were valuable for a comparison with the preliminary estimates on late Pleistocene calculations carried out by geomorphological investigations. Moreover, we correlated co-seismic deformations with the long-term morphologies and structures. The 2009 co-seismic ruptures show a general coherence with the long-term Paganica fault trace, both in terms of location and style. However, the limited extent of the 2009 surface ruptures coincides with the portion of the fault trace where deformation is more localized and few splays contribute to the extension. This is also testified by the presence on its hanging-wall of a large late Pleistocene-Holocene alluvial fan that subsides over the basin depocenter. Conversely, where the Paganica fault system branches out, various splays accommodated the small 2009 co-seismic throw, resulting in a distributed and not evident extensional strain. The preserved fault-related geomorphology is evidence for the persistence of the rupture complexities during Quaternary. On this light, further studies on the style of fault activity are needed to estimate if the Paganica fault is capable of earthquakes with Magnitude larger than the 2009 event.
    Description: Submitted
    Description: Vienna, Austria
    Description: open
    Keywords: Quaternary deformation ; long-term slip-rate ; fault-related geomorphology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The occurrence of the Mw 6.3, April 6, 2009 earthquake has highlighted how critical is the development of hazard models that incorporate all the information on the long-term seismic behavior of faults (i.e., individual events rupture length and slip, timing, etc.). Under this light we started a campaign of paleoseismological investigations in the epicentral area. The 2009 earthquake occurred on the Paganica normal fault (PF hereinafter) and produced a max 0.15 m high, 3 km-long continuous surface rupture along its central section, as well as several short, discontinuous cracks along the rest of the fault trace; secondary slip along nearby tectonic structures was observed too. The PF consists of a prominent NW-SE striking and SW dipping long-term morphologic scarp formed by the tectonic juxtaposition of Pliocene-middle Pleistocene and late Pleistocene alluvial deposits, and by smaller compound scarps in late Pleistocene-Holocene deposits. The fault runs for a total length of about 20 km along the NE side of the Aterno River valley, a graben-type basin bounded by marked antithetic faults. The limited extent and the small throw of the 2009 surface ruptures, when compared to the size of the Paganica long-term fault scarp, raise questions about the evolution and rupture history of this fault and suggest that the PF may have experienced larger Magnitude earthquakes than the 2009 seismic event. With the aim of defining the Max Magnitude expected for the PF by determining the size of the individual coseismic surface ruptures occurred in the past and their max extent, their frequency and the average rate of displacement we have been excavating new trenches and studied artificial exposures across the PF fault zone, in most of the cases intersecting the 2009 surface ruptures. Preliminary results show evidence for repeated decimetric surface faulting events during the past 3 millennia with the penultimate likely being the 1461 event (Me 6.4); evidence for possible previous larger slip events is found too. Whether the small ruptures are all related to slip at depth on the PF or would represent sympathetic slip triggered by earthquake occurred on nearby faults should be better investigated. Conversely, provided the “double size” slip behavior of the PF is confirmed, to characterize the seismic hazard of the area we should consider a more complex seismogenic model than that presently applied. In particular, we should include also the scenario that the PF produces relatively frequent (each 4-600 yr) 2009-type earthquakes and rare (each 3-4 millennia) larger events, likely in connection with other nearby active structures (i.e., San Demetrio Fault? Pettino Fault?).
    Description: Unpublished
    Description: Wien (Austria)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: 2009 L'Aquila earthquake ; normal faulting ; paleoseismology ; small size surface faulting ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: Fractures in AND-2A drillcore were documented in this study. Over 4100 fractures of all types were logged. A population of 510 steeply-dipping, petal, petal-centreline and core-edge induced fractures is present, reaching a maximum density of c. 10 fractures/metre. Subhorizontal induced extension fractures are also abundant. There are 1008 natural fractures in the core, including faults, brecciated zones, veins and sedimentary intrusions. Kinematic indicators document dominant normal faulting, although reverse faults are also present. The natural fractures occur in strata ranging in age from the Miocene to the Plio-Pleistocene.
    Description: Published
    Description: 69-76
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: Fractures ; Downhole logging ; Drillcore ; Stress ; Antarctica ; Drilling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.
    Description: Published
    Description: 57-68
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: Downhole measurements ; Borehole ; Vertical Seismic Profile ; Hydraulic Fracturing ; Antarctica ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: main article
    Description: We performed paleoseismological investigations at four sites across the normal Paganica fault (PF) (source of the 2009 Mw 6.3 L’Aquila earthquake), with the goal of reconstructing the rupture history and of contributing to the evaluation of the maximum event expected along the PF. We recognized five distinct surface faulting earthquakes (including the 2009) in the trenches. The age of the penultimate event is consistent with the 1461 earthquake; the third event back occurred around 1000 AD. The two oldest events have larger uncertainties and occurred in the interval 760 BC–670 AD and 2900–760 BC, respectively. The along‐strike vertical displacement for each paleoevent has a limited variability consistently with the fairly homogeneous slip observed in 2009 along the northern part of the rupture. Conversely, the throws change between distinct events and range between 0.15 m in 2009 (maximum estimate) and close to 0.4 (lower bound estimate) in earlier events. These paleorecords and the high fault escarpments imply that earthquakes larger than 2009 occurred on the PF, with implications for the level of hazard. Recurrence intervals also reflect a change with time, the average interval before ∼1000 AD is longer compared to that after this date. Two events occurred in the 2000– 4000 years preceding ∼1000 AD, while three events occurred since ∼1000 AD. The age uncertainties affecting the interpreted events prevent the evaluation of a unique value for interevent interval; the older events appear closely spaced in time or far apart depending on the upper or lower boundary of the age interval. We tentatively assign an average interevent time of ∼500 years for the three youngest events, whereas the time elapsed between the previous ones could be larger, in the order of 1000–2000 years. We calculate a late Pleistocene dip‐slip rate for the PF of 0.2–0.4 mm/yr, consistent with 0.25–0.5 mm/yr for the early Pleistocene. Using age and throw of individual events, we calculate a similar late Holocene average dip‐slip rate of ∼0.3–0.4 mm/yr. This suggests that the portion of the PF where the 2009 continuous surface faulting occurred has fairly a constant average slip release since late Pleistocene. Finally, we discuss different rupture scenarios and alternative models of occurrence compatible with our data and their variability.
    Description: This work was partially funded by the Italian Dipartimento della Protezione Civile in the frame of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV).
    Description: Published
    Description: B07308
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: 2009 L'Aquila seismic sequence ; paleoearthquakes ; Paganica fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Contemporary and concurrent extension and compression in Italy Paola Montone1, M. Teresa Mariucci1 and Simona Pierdominici2 1-Istituto Nazionale di Geofisica e Vulcanologia, Rome , Italy 2 – GFZ GeoForschungsZentrum, Potsdam, Germany We present the latest updating and the complete collection of data on the contemporary stress orientations in Italy. Data are relative to different stress indicators: borehole breakouts from deep drillings, crustal earthquake focal mechanisms and fault data. With respect to the previous compilation, performed in 2004, 206 new entries complete the definition of the horizontal stress orientation and tectonic regime in the most part of the territory, and bring new information mainly in Sicily and along the Apenninic belt. With an increase of 37% with respect to the previous compilation, now the global Italian dataset consists of 499 records with a reliable quality for stress maps. The total dataset includes the following active stress indicators: 56% borehole breakouts, 39% single earthquake focal mechanisms, and 5% represented by formal inversions of focal mechanisms, faults and overcoring data. A quality ranking between A and E is assigned to each stress data, with A being the highest quality and E the lowest. Only A-, B- and C-quality stress indicators are considered consistent for analyzing stress patterns. Depth interval of the entire dataset is between 0 to 40 km. The results in map are reported in terms of minimum horizontal stress (Shmin) because most of earthquakes present an extensional regime. Concerning breakouts, their orientations correspond to Shmin; since all the considered faults are normal faults, we assume the Shmin direction as perpendicular to the fault strike when no information on slip direction is available. The achieved results can be summarized in 3 main points: i) in some areas of Italy (Sicily, Friuli and Po Plain in the northern Italy), the alignment of horizontal stresses closely matches the ~N-S direction of ongoing crustal motions with respect to stable European plate. This result can be associated to the first-order stress field that drives the plate movement; ii) along the entire Apenninic belt – from north to south- a diffuse extensional stress regime is clearly showed by a large dataset indicating a NE-SW direction of extension, probably related to a second-order stress field; iii) the stress rotations observed in some areas (i.e., Po Plain minor arcs and Gela thrust front) reflect a complex interaction between first order stress field and local effects, revealing the importance of the inherited tectonic structure orientations. In particular in this work the simultaneous occurrence of different stress regimes is discussed. Finally, we underline that this kind of map is very useful to those many users that work on this topic and/or related ones such as, for instance, geophysical modeling, seismic hazard assessment, rock mechanics laboratory experiments, deep drillings but also on oil and gas well production and construction of nuclear waste deposits.
    Description: Published
    Description: San Francisco, California
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: stress ; seismotectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...