ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-17
    Description: Techniques capable of measuring lava discharge rates during an eruption are important for hazard prediction, warning, and mitigation. To this end, we developed an automated system that uses thermal infrared satellite MODIS data to estimate time-averaged discharge rate. MODIS-derived time-varying discharge rates were used to drive lava flow simulations calculated using the MAGFLOW cellular automata model, allowing us to simulate the discharge rate-dependent spread of lava as a function of time. During the July 2006 eruption of Mount Etna (Sicily, Italy), discharge rates were estimated at regular intervals (i.e., up to 2 times/day) using the MODIS data. The eruption lasted 10 days and produced a *3-km-long lava flow field. Time-averaged discharge rates extracted from 13 MODIS images were utilized to produce a detailed chronology of lava flow emplacement, demonstrating how infrared satellite data can be used to drive numerical simulations of lava flow paths during an ongoing eruptive event. The good agreement between simulated and mapped flow areas indicates that model-based inundation predictions, driven by timevarying discharge rate data, provide an excellent means for assessing the hazard posed by ongoing effusive eruptions.
    Description: Published
    Description: 539–550
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow simulation ; 2006 Etna eruption ; MAGFLOW model ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method). However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.
    Description: Published
    Description: 500-509
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: absolute and relative gravimeters ; uncertainty ; microgravity ; Etna volcano ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-04
    Description: Geodetic and magnetic investigations have been playing an increasingly important role in studies on Mt. Etna eruptive processes. During ascent, magma interacts with surrounding rocks and fluids, and inevitably crustal deformation and disturbances in the local magnetic field are produced. These effects are generally interpreted separately from each other and consistency of interpretations obtained from different methods is qualitatively checked only a posteriori. In order to make the estimation of source parameters more robust we propose an integrated inversion from deformation and magnetic data that leads to the best possible understanding of the underlying geophysical process. The inversion problem was formulated following a global optimization approach based on the use of genetic algorithms. The proposed modeling inversion technique was applied on field data sets recorded during the onset of the 2002-2003 Etna flank eruption. The deformation pattern and the magnetic anomalies were consistent with a piezomagnetic effect caused by a dyke intrusion propagating along the NE direction.
    Description: 21-30
    Description: JCR Journal
    Description: open
    Keywords: ground deformation ; magnetic anomalies ; inverse modelling ; genetic algorithms ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An intensive nonlinear analysis of geomagnetic time series from the magnetic network on Etna volcano was carried out to investigate the dynamical behavior of magnetic anomalies in volcanic areas. The short-term predictability of the geomagnetic time series was evaluated to establish a possible low-dimensional deterministic dynamics. We estimated the predictive ability of both a nonlinear forecasting technique and a global autoregressive model by comparing the prediction errors. Our findings highlight that volcanomagnetic signals are the result of complex processes that cannot easily be predicted. There is slight evidence based on nonlinear predictions, that the geomagnetic time series are to be governed by many variables, whose time evolution could be better regarded as arising from complex high dimensional processes.
    Description: Published
    Description: 119-125
    Description: 1.6. Osservazioni di geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; non-linear analysis ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...