ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-03
    Description: Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 ([10,000 latm) result in low seawater pH (\6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 latm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic tradeoffs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.
    Description: Published
    Description: 93–115
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Calcifying species , Ecosystem effects, Natural analogues, Submarine hydrothermalism ; 03. Hydrosphere ; 03.04. Chemical and biological ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: The complexity of volcano-hosted hydrothermal systems is such that thorough characterization requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterization of the shallow structure of the southwestern Ischia's hydrothermal system. We show that the investigated area is characterized by a structural setting that, although very complex, can be schematized in three sectors, namely, the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structural setting governs fluid circulation. Geochemical prospecting shows, in fact, that the caldera floor sector, a structural and topographic low, is the area where CO2-rich (〉40 cm3/l) hydrothermally mature (log Mg/Na ratios 〈 −3) waters, of prevalently meteoric origin (δ18O 〈 −5.5‰), preferentially flow and accumulate. This pervasive hydrothermal circulation within the caldera floor sector, being also the source of significant CO2 soil degassing (〉150 g m−2 d−1), is clearly captured by electrical resistivity tomography (ERT) and transient electromagnetic (TEM) surveys as a highly conductive (resistivity 〈 3 Ω·m) layer from depths of ~100 m, and therefore within the Mount Epomeo Green Tuff (MEGT) formation. Our observations indicate, instead, that less-thermalized fluids prevail in the extra caldera and resurgent caldera sectors, where highly conductive seawater-like (total dissolved solid, TDS 〉 10,000 mg/l) and poorly conductive meteoric-derived (TDS 〈 4,000 mg/l) waters are observed, respectively. We finally integrate our observations to build a general model for fluid circulation in the shallowest (〈0.5 km) part of Ischia's hydrothermal system.
    Description: Published
    Description: Q07017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: ERT ; TEM ; Ischia ; fluid geochemistry ; hydrothermal systems ; resurgent caldera ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-18
    Description: Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla.
    Description: The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC); and the International Civil Aviation Organization.
    Description: Published
    Description: 80-99
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Hekla ; Multi-GAS ; degassing ; volcanic unrest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Epomeo Green Tuff units; MEGT). The mineral assemblage and composition of such MEGT units were initially characterised by ad hoc designed optical microscopy and electron microprobe analysis, showing that phenocrysts (dominantly alkali–feldspars and plagioclase) are set in a pervasively altered (with abundant clay minerals and zeolites) groundmass. Reaction of infiltrating waters with MEGT minerals was simulated over a range of realistic (for Ischia) temperatures (95–260 C) and CO2 fugacities (10 0.2 to 100.5) bar. During the model runs, a set of secondary minerals (selected based on independent information from alteration minerals’ studies) was allowed to precipitate from model solutions, when saturation was achieved. The compositional evolution of model solutions obtained in the 95– 260 C runs were finally compared with compositions of Ischia’s thermal groundwaters, demonstrating an overall agreement. Our simulations, in particular, well reproduce the Mg-depleting maturation path of hydrothermal solutions, and have end-ofrun model solutions whose Na–K–Mg compositions well reflect attainment of full-equilibrium conditions at run temperature. High-temperature (180–260 C) model runs are those best matching the Na–K–Mg compositions of Ischia’s most chemically mature water samples, supporting quenching of deep-reservoir conditions for these surface manifestations; whilst Fe, SiO2 and, to a lesser extent, SO4 contents of natural samples are better reproduced in low-temperature (95 C) runs, suggesting that these species reflect conditions of water–rock interaction in the shallow hydrothermal environment. The ability of model runs to reproduce the compositional features of Ischia’s thermal manifestations, demonstrated here, adds supplementary confidence on reaction path modelling as a realistic and insightful representation of mineral–fluid hydrothermal reactions. Our results, in particular, demonstrate the significant impact of host rock minerals’ assemblage in governing the paths and trends of hydrothermal fluids’ maturation.
    Description: Published
    Description: 108-129
    Description: JCR Journal
    Description: restricted
    Keywords: Ischia ; Hydrothermal systems ; EQ3-6 ; Geochemical modelling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The paper proposes a method to evaluate the potential for electric power production at any site of possible geothermal interest. Accounting for geological data of the reservoirs, the method allows the computation of the available electrical power of the investigated site. Electrical energy production from geothermal sources is realized through different techniques, such as single flash and double flash, dry steam, and binary ORC plants. The technique chosen to be the most productive is determined by analyzing a specific range of geofluid properties, mainly temperature and pressure. Moreover, each plant typology has a global efficiency that may be correlated to geofluid enthalpy by empiric relations available in literature. The proposed evaluation method brings together all these correlations, yielding the power availability from a geosource, once its temperature and pressure are known. The method takes as input the geofluid available flow rate, its pressure, temperature and non-condensable gas content. It defines the best plant option from these parameters, calculates its global efficiency and finally returns the actual available power. For sites of geothermic interest, such as the volcanic island of Ischia in Southern Italy, the results of the application of this new method clearly highlight the most suitable zones for power plants installations.
    Description: Published
    Description: 303-312
    Description: 4V. Vulcani e ambiente
    Description: 5A. Energia e georisorse
    Description: JCR Journal
    Description: restricted
    Keywords: Geothermal power plants Geothermal exergy Ischia volcanic island ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-14
    Description: Abstract — A multidisciplinary strategy integrating a data set obtained using different mthods and techniques, ranging from remote sensing (UAV system, FTIR, thermal imaging) to direct field measurements (soil heat flux, soil CO2 flux, gravimetry and geomagnetism) proved highly capable of modeling regions affected by pressurized fluids circulation and extreme natural environments. As a test site, the Salinelle mud volcanoes area, located close to the city of Paternò (Sicily), was selected. This area is characterized by gas exhalations through water/mud vents. Detailed morpho-structural information, GIS thematic maps and geochemail signature of the released gas were quickly retrieved. This study showed that by integrating and harmonizing many disciplines of geosciences it is possible to get a comprehensive geological model of the studied area. Results, showed the accurate detection of structural setting of such an area and the opportunuty to monitor the spatial/temporal evolution of water/mud vents. The proposed approach allowed to expand the use of each single technique beyond its traditional applications and to make it a potential tool for many fields of geoscience.
    Description: Published
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: N/A or not JCR
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...