ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Hydrochemical (major and some minor constituents), stable isotope (dDH2O and d18OH2O; d13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg〉Na- SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, d18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/ water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and d13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from )10.0& and 2.8&, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios (d13CCO2 value from )3 to 0& vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/ or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.
    Description: Published
    Description: 781-807
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal waters, ; chemical and isotope composition, ; dissolved gases ; d13C ; Sicily. ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A simple method for determining the d13C of TDIC (Total Dissolved Inorganic Carbon) in natural waters was developed and tested. The proposed method is based on chemical and physical stripping of CO2 from water samples. The sampling apparatus consists of a glass bottle (ca 100 ml) totally filled with water sample in the field and sealed by gas-tight rubber/teflon plug. In the laboratory, we introduce 10 ml of pure Ar as host gas into the bottles and draw out an equal volume of water. About 0.5 ml of 37% extra-pure HCl is then injected into the bottle. Water pH decreases to values close to 1 and, therefore, the only carbon species present is CO2 both as dissolved and gaseous phase. Then the bottle is connected to a vacuum line to extract CO2 gas and to purify it by means of standard techniques for CO2 purification. In order to test this method, several sea water samples were prepared and analysed, as well as a series of standard solutions of Na2CO3 at known isotopic composition of carbon. The accuracy of these measurements was ± 0.2 %° vs V-PDB and their reproducibility was better than 0.2 %° vs V-PDB.
    Description: -National Group for Volcanology, Italy.
    Description: Published
    Description: 313-320
    Description: reserved
    Keywords: Carbon isotopes ; TDIC,CO2 ; HCO3 ; CO2- water interaction ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 433222 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Marked increases of CO2, H2 and He dissolved in thermal waters and changes in the dissolved carbon isotopic composition, were observed at Stromboli before the 28 December 2002 eruption and before a violent explosive paroxysm occurred on 5 April 2003. High anomalous CO2 flux values were recorded at the crater rim since a week before the eruption onset. The first anomalies in the thermal waters (dissolved CO2 amount) appeared some months before the eruption, when magma column rose at a very high level in the conduit. High peaks of dissolved H2 and He were recorded a few days before the paroxysm. Carbon isotopic composition indicates a magmatic origin of the dissolved CO2 whose increase, together with those of H2 and He, is attributed to an increasing output of deep gases likely produced by depressurization of a rising batch of a deep gas-rich magma, whose fragments have been emitted during the explosion.
    Description: Italian Civil Protection
    Description: Published
    Description: L07620
    Description: partially_open
    Keywords: Stromboli ; geochemical precursors ; CO2 flux ; pH ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 190819 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (〉84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.
    Description: Published
    Description: 1-9
    Description: partially_open
    Keywords: bubbling gases ; forearc region ; Jalisco Block-Mexico ; nitrogen isotopes ; subduction-related volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532399 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Description: Published
    Description: 91– 108
    Description: partially_open
    Keywords: Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...