ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-10
    Description: Between January 2011 and April 2012, Santorini volcano (Greece) experienced a period of unrest characterised by the onset of detectable seismicity and caldera-wide uplift. This episode of inflation represented the first sizeable intrusion of magma beneath Santorini in the past 50 years. We employ a new approach using 222 Rn– δ 13 C systematics to identify and quantify the source of diffuse degassing at Santorini during the period of renewed activity. Soil CO 2 flux measurements were made across a network of sites on Nea Kameni between September 2010 and January 2012. Gas samples were collected in April and September 2011 for isotopic analysis of CO 2 ( δ 13 C), and radon detectors were deployed during September 2011 to measure ( 222 Rn). Our results reveal a change in the pattern of degassing from the summit of the volcano (Nea Kameni) and suggest an increase in diffuse CO 2 emissions between September 2010 and January 2012. High-CO 2 -flux soil gas samples have δ 13 C ∼ 0 .Using this value and other evidence from the literature we conclude that these CO 2 emissions from Santorini were a mixture between CO 2 sourced from magma, and CO 2 released by the thermal or metamorphic breakdown of crustal limestone. We suggest that this mixing of magmatic and crustal carbonate sources may account more broadly for the typical range of δ 13 CvaluesofCO 2 (from ∼− 4 to ∼+ 1 )in diffuse volcanic and fumarole gas emissions around the Mediterranean, without the need to invoke unusual mantle source compositions. At Santorini a mixing model involving magmatic CO 2 (with δ 13 C of − 3 ± 2 and elevated ( 222 Rn)/CO 2 ratios ∼ 10 5 –10 6 Bqkg − 1 )andCO 2 released from decarbonation of crustal limestone (with ( 222 Rn)/CO 2 ∼ 30–300 Bqkg − 1 ,and δ 13 Cof + 5 ) can account for the δ 13 C and ( 222 Rn)/CO 2 characteristics of the ‘high flux’ gas source. This model suggests ∼ 60% of the carbon in the high flux deep CO 2 end member is of magmatic origin. This combination of δ 13 Cand( 222 Rn) measurements has potential to quantify magmatic and crustal contributions to the diffuse outgassing of CO 2 in volcanic areas, especially those where breakdown of crustal limestone is likely to contribute significantly to the CO 2 flux
    Description: Published
    Description: 180-190
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic unrest ; soil gas measurements ; carbon isotopic analysis ; magmatic degassing ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-20
    Description: Mt. Etna is among the largest global volcanic outgassers with respect to carbon and sulfur, yet questions remain regarding the source of these volatiles and their systematics in the crust and mantle. The importance of heterogeneous mantle sources, mixing, crustal assimilation, and disequilibrium degassing is investigated using melt inclusions erupted during the CE 1669 eruption of Mt. Etna, Italy. We find that the melt inclusion compositions define a mixing array between two geochemically distinct melts. One end‐member melt is depleted in light rare Earth elements (LREEs) and enriched in strontium (Sr), carbon, and sulfur; the other is enriched in LREE and depleted in Sr, carbon, and sulfur. We infer, through modeling, that the melts may either have been generated by melting a mantle source that includes a recycled oceanic crustal component or they may have assimilated carbonate material in the crust. The resulting LREE‐depleted, Sr‐enriched melts were also alkali‐rich, which enhanced the solubility of carbon and sulfur. The LREE‐depleted, Sr‐ and volatile‐rich melt ascended through the crust and likely became supersaturated with respect to CO2 and sulfur. The melt intruded into a LREE‐enriched, relatively degassed magma body in the shallow crust, cooled rapidly, and vesiculated, likely triggering eruption. The melt inclusion array trapped by growing olivines during this intrusion process records a snapshot of incomplete mixing between the two melts. Mt. Etna is renowned for the large increases in CO2 gas fluxes shortly before and during eruption. The intrusion of supersaturated, CO2‐enhanced magmas into shallow reservoirs may be a common process at Mt. Etna.
    Description: Published
    Description: 3150-3169
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Etna, 1669 eruption ; Carbon Dioxide in Geochemically Heterogeneous Melt Inclusions From Mount Etna, Italy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...