ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (11)
  • Fluid geochemistry  (6)
  • 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling  (3)
Collection
  • 1
    Publication Date: 2021-06-16
    Description: This study performed the first assessment of the volcanic gas output from the Central Volcanic Zone (CVZ) of northern Chile. We present the fluxes and compositions of volcanic gases (H2O, CO2, H2, HCl, HF, and HBr) from five of the most actively degassing volcanoes in this region—Láscar, Lastarria, Putana, Ollagüe, and San Pedro—obtained during field campaigns in 2012 and 2013. The inferred gas plume compositions for Láscar and Lastarria (CO2/Stot = 0.9–2.2; Stot/HCl = 1.4–3.4) are similar to those obtained in the Southern Volcanic Zone of Chile, suggesting uniform magmatic gas fingerprint throughout the Chilean arc. Combining these compositions with our own UV spectroscopy measurements of the SO2 output (summing to ~1800 t d 1 for the CVZ), we calculate a cumulative CO2 output of 1743–1988 t d 1 and a total volatiles output of 〉20,200 t d 1. 1.
    Description: Published
    Description: 4961-4969
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Gas output from the Central Volcanic Zone ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotopic composition of CH4, H2O, H2 and H2S. C1/C2+ ratios are significantly higher than those typically observed for purely thermogenic sources. Hydrocarbon distribution ratios for other continental-hydrothermal sources rich in CO2 are comparable to those of the Nisyros fumaroles implying that abiogenic methane might be significantly more widespread than previously assumed [2]. Relative concentrations of hydrocarbons in continental-hydrothermal discharges are even indistinguishable from those measured in ultramafic hydrothermal emissions. The fact that redox conditions do not seem to exert any control on the relative concentrations of hydrocarbons in hydrothermal emissions in general, implies that the same two sources account for hydrocarbon production in continental and ultramafic environments. One source generates methane exclusively through the selective abiogenic reduction of CO2 (Sabatierreaction). The other source produces minor amounts of methane, ethane and propane by a random process and represents either the thermal cracking of organic matter or the polymerization starting from methane. Hydrogen isotope partitioning between H2O, H2S, H2 and CH4 in Nisyros fumaroles reveals that isotopic exchange rates are highest for H2O-H2S followed by H2O-H2. In contrast to H2 and H2S, the hydrogen isotopic composition of methane exhibits almost no local variations. This is in agreement with its predominantly abiogenic hydrothermal origin and with the low temperature sensitivity of the hydrogen isotope fractionation factor between water vapor and methane.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: hydrothermal gases ; methane ; ethane ; propane ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar ( 1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3–4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2–CH4–CO–H2O–H2 gas equilibrium reactions indicates equilibration temperatures from 170 C to 310 C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is 170 C whereas the MC is hotter, at 340 C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 C, is necessary to explain the range in fumarole gas chemistry.
    Description: Published
    Description: 265–278
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal fluids ; Yellowstone Plateau ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-09
    Description: Greece has a very complex geodynamic setting deriving from a long and complicat-ed geological history being characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many gas manifestations. Depending on the prevailing gas species, the latter can be subdivided in three main groups: CO2-, N2- and CH4-dominated. In the present work, we focus on methane and light hydrocarbons (C2-C6) to define their origin. CH4 concentrations (〈2 to 915,200 μmol/mol) and isotop-ic ratios (δ13C -79.8 to +16.9 ‰, δD -298 to +264‰) cover a wide range of values indicating different origins and/or secondary post-genetic processes. Samples from gas discharged along the Ionian coast and in northern Aegean Sea have a prevail-ing microbial origin. Cold and thermal gas manifestations of central and northern Greece display a prevalent thermogenic origin. Methane in gases released along the active volcanic arc is prevailingly abiogenic, although thermogenic contributions cannot be excluded. Gases collected in the geothermal areas of Sperchios basin and northern Euboea are likely affected by strong secondary oxidation processes, as suggested by their highly positive C and H isotopic values (up to +16.9‰ and +264‰ respectively) and low C1/(C2+C3) ratios.
    Description: Submitted
    Description: Thessaloniki, Greece
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Hellenic territory ; hydrothermal gases ; cold gas emissions ; origin of hydrocarbon gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. The numerical modeling procedures of geochemical processes are one of the few approaches for investigating the short-long-term consequences of CO2 storage into a deep reservoir. We present the results of a new approach for the reconstruction of thermo-physical properties of an off-shore deep well (situated in the medium Tyrrhenian Sea, only 5 miles from the coast, in the frame of a distensive and relatively high heat flux regime as a whole,with good outcrops, on-shore, of its stratigraphy includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l). We used the well-log coupled with temperature profile and new mineralogical analyses of the outcrops geological formations, being the original core data lacking. This kind of procedure is new as a whole, and it is useful to create background petro-physical data, for reservoir engineering numerical simulations both of mass-transport and geochemical as well as geo-mechanical, in order to asses its general properties, without re-opening the well itself for industrial use, such as CO2 geological storage. The profile of thermal capacity and conductivity, as well as porosity and permeability resulted very well constrained and detailed for further numerical simulation uses. Porosity is a very important parameter for reservoir engineering, mainly for numerical simulations including geochemical modelling, being strongly necessary for CO2 geological storage feasibility studies, because it allows to compute: i) the reservoir storage capacity for each trapping mechanisms (some algorithms are discussed in the presentation) and ii) the water/rock ratio (one of the input parameter requested by the geochemical software codes). A common problem, working with closed wells with, available the well-log report only, is to obtain data on the thermo-physical properties of the rock. Usually the available well-log report the temperature profile measured during drilling, the mud-loss and some other information on water and gas phase presence. In this work we present a procedure that allow to estimate porosity and permeability of the rock formation from the well-log data joint with a rough mineralogical analyses of the corresponding geological formations outcrop with the use of a boundary condition such as shallow heat flow measurements; a similar approach were presented from some authors that dealt with similar problems e.g. Singh V.K., (2007). The analyses of the rock samples proceed by using i) petro-graphical analyses; ii) calcimetry with Dietrich-Fruhling apparatus in order to analyse the carbonate content of each sample; iii) XRD Rietveld analyses in order to quantify the major mineralogy of each sample and to apply the dolomite correction to the results of calcimetry determination. Rietveld quantification procedure were performed by using Maud v 2.2.; iv) SEM analyses have been accomplished later in details. Successively, hints about the subsequent geochemical modelling approach are presented. Chemical composition of the aquifer pore water has been has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 70 °C and 200 bar). Numerical simulations has been carried out by the PRHEEQC (V2.11) Software Package via corrections to the code default thermodynamic to obtain a more realistic modeling.
    Description: Published
    Description: La Habana, Cuba
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: geochemical modeling ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-09
    Description: In this work we present a new approach to model the effects of CO2 sequestration that has been tested in the Weyburn test site. The Weyburn oil-pull is recovered from Midale Beds (at 1300-1500 m depth). This formation consists of Mississippian shallow marine evaporitic carbonates that can be divided into two units: i) the dolomitic “Marly” and ii) the underlying calcitic “Vuggy”, sealed by an anhydrite cap-rock. Presently, about 3 billions mc of supercritical CO2 have been injected into the “Phase A1” injection area. The aim of our model is to reconstruct i) the chemical composition of the reservoir; ii) the geochemical evolution of the reservoir with time as CO2 is injected and ii) the boundary conditions. The geochemical modeling has been performed by using the code PRHEEQC (V2.11) software package. The “primitive brine” composition was calculated on the basis of the chemical equilibrium among the various phases, assuming reservoir equilibrium conditions for the mineral assemblage with respect to a Na-Cl (Cl/Na=1.2) water, at T of 62 °C and P of 150 bars via thermodynamic corrections to the code database. A comparison between the chemical composition of the “primitive brine” and that analytically determined on water samples collected before the CO2 injection shows an agreement within 10 %. Furthermore, we computed the kinetic evolution of the reservoir by considering the local equilibrium and the kinetically controlled reactions taking into account the CO2 injected during four years of monitoring. The calculated chemical composition after the CO2 injection is consistent with the analytical data of samples collected in 2004, with the exception of calcium and magnesium contents. The results of the Inverse Modeling Simulation (IMS) suggest that the measured Ca and Mg contents are higher than those calculated from the solubility of calcite and dolomite, likely due to the complexation effect of carboxilic acid. The results of the application of the kinetic model lasting 100 years indicate that dissolution of K-feldspar and kaolinite and precipitation of chalcedony affect the Marly and Vuggy units. Furthermore, calcite tends to be dissolved as CO2 solubilises in the reservoir, whereas dolomite dissolution can be considered negligible. Dawsonite precipitates as secondary mineral. The CO2 content from solubility trapping (short/medium-term sequestration) calculation is ~0.8 mol/L.
    Description: Published
    Description: Pechino, Cina
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: geochemical modeling ; Weyburn project ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: On 3rd November 2002, at about 3 km off-shore of Panarea Island (Aeolian Islands, Southern Italy), a series of gas vents suddenly and violently opened from the seafloor at the depth of 10-15 m, with an unusually high gas flux and superimposing on the already existing submarine fumarolic field. Starting from the 12th November 2002 a discontinuous geochemical monitoring program was carried out. The emissions consisted in an emulsion whose liquid phase derived from condensation of an uprising vapor phase occurring close to the fluid outlets without significant contamination by seawater. The whole composition of the fluids was basically H2O- and CO2-dominated, with minor amounts of typical «hydrothermal» components (such as H2S, H2, CO and light hydrocarbons), atmospheric-related compounds, and characterized by the occurrence of a significant magmatic gas fraction (mostly represented by SO2, HCl and HF). According to the observed temporal variability of the fluid compositions, between November and December 2002 the hydrothermal feeding system was controlled by oxidizing conditions due to the input of magmatic gases. The magmatic degassing phenomena showed a transient nature, as testified by the almost complete disappearance of the magmatic markers in a couple of months and by the restoration, since January 2003, of the chemical features of the existing hydrothermal system. The most striking feature of the evolution of the «Panarea degassing event» was the relatively rapid restoration of the typical reducing conditions of a stationary hydrothermal system, in which the FeO/Fe1.5O redox pair of the rock mineral phases has turned to be the dominating redox controlling system.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Aeolian Islands ; Panarea ; submarine fumaroles ; gas chemistry ; geochemical monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1571798 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: CO2 geological storage is one of the most promising technologies for reducing atmospheric emissions of greenhouse gas. The results obtained by a new approach applied to a CO2 storage geochemical model at the Weyburn (Saskatchewan, Canada) test site, where since September 2000 5000 t/day of supercritical CO2 are injected, are presented and discussed. The Weyburn oil-pull is recovered from the Midale Beds (at the depth of 1300-1500 m), consisting of Mississippian shallow marine carbonate-evaporites, that is classically subdivided into two units: i) the dolomitic “Marly” and ii) the underlying calcitic “Vuggy”, sealed by an anhydrite cap-rock. Assumptions and gap-acceptance are commonly made to reconstruct the reservoir conditions (pressure, pH, chemistry, and mineral assemblage), although most geochemical parameters of deep fluids are to be computed by a posteriori procedure due to the sampling collection at the well-head, i.e. using depressurised aliquots. On the basis of the available data at Weyburn, such as: a) bulk mineralogy of the Marly and Vuggy reservoirs; b) mean gas-cap composition at the well-heads and c) selected pre- and post-CO2 injection water samples, we have rebuilt the in-situ reservoir chemical composition and the kinetic evolution after CO2 injection. The geochemical modelling has been performed by using the code PRHEEQC (V2.11) software package; the in-situ reservoir composition was calculated by the chemical equilibrium among the various phases at reservoir temperature (62 °C) and pressure (150 bars) via thermodynamic corrections to the code default database. Furthermore, the “primitive” chemical composition of the pre-injection Marly and Vuggy liquid phase was derived by assuming the equilibrium conditions for the mineral assemblage with respect to a Na-Cl (Cl/Na=1.2) water. A comparison between the chemical composition of the “primitive brine” and that measured before the CO2 injection shown an agreement within 10 % for most analytical species. The second step has been that to compute the geochemical impact of three years of CO2 injection (September 2000-2003) by kinetically controlled reactions. In order to statically validated our geochemical model we have compared the computed and measured data by using the Median Test. The results show that the proposed geochemical model is able to reliably describe (within 5% error) the behaviour of pH, HCO3, Cl, Li, Na, Sr, Si and HS+SO4, with the exception of K, Ca and Mg. Finally, the kinetic evolution of the CO2-rich Weyburn brines interacting with the host-rock minerals, performed over 100 years after injection, has also been modelled. The solubility trapping (short/medium-term sequestration) gives an amount of dissolved CO2 of 0.761moles/L and 0.752 moles/L for Marly and Vuggy units, respectively, whereas the mineral trapping, calculated as difference between dissolved (calcite and dolomite) and precipitated carbonate (dawsonite) minerals, is -0.019 and -5.69x10-5 moles/L for Marly and Vuggy units, respectively. The experimental data-set available and the geochemical modelling intrinsic limitation introduce a large uncertainty in the modelled results and in order to evaluate the dependence of the results from the modeling code, a different thermodynamic approach, such as the modelling software GEM (Gibbs Energy Minimization approach), is required.
    Description: Published
    Description: Vienna, Austria
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Geochemical modeling ; Weyburn Project ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-09
    Description: Geological storage is presently one of the most promising options for reducing anthropogenic emissions of CO2. Among the several projects investigating the fate of CO2 stored at depth, the EnCana's CO2 injection EOR (Enhancing Oil Recovery) project at Weyburn (Saskatchewan, Canada) is the most important oil production development that hosts an international monitoring project. In the Weyburn EOR Project CO2 is used to increase recovery of heavy oil from the Midale Beds, a Mississippian reservoir consisting of shallow marine carbonate, where about 3 billions standard m3 of supercritical CO2 have been injected since 2000 with an injection rate of 5000 ton/day. In this work the available dataset (bulk mineralogy of the reservoir, gas-cap composition and selected preand post-CO2 injection water samples) provided by the International Energy Agency Weyburn CO2 Monitoring & Storage Project has been used in order to: i) reconstruct the pre-injection reservoir chemical composition (including pH and the boundary conditions at 62 °C and 15 MPa); ii) assess the evolution of the reservoir subjected to CO2 injection and predict dissolution/precipitation processes of the Weyburn brines over 100 years after injection; iii) validate the short-term (September 2000–2003) evolution of the in situ reservoir fluids due to the CO2 injection, by comparing the surface analytical data with the composition of the computed depressurized brines. To achieve these goals the PRHEEQC (V2.14) Software Package was used with both modified thermodynamic database and correction for supercritical CO2 fugacity. The oil–gas–water interaction and the non-ideality of the gas phase (with exception of CO2) were not considered in the numerical simulations. Despite intrinsic limitations and uncertainties of geochemical modeling, the main results can be summarized, as follows: 1) the calculated pre-injection chemical composition of the Midale Beds brine is consistent with the analytical data of the waters collected in 2000 (baseline survey), 2) the main reservoir reactions (CO2 and carbonate dissolution) take place within the first year of simulation, 3) the temporal evolution of the chemical features of the fluids in the Weyburn reservoir suggests that CO2 can safely be stored by solubility (as CO2(aq)) and mineral trapping (via dawsonite precipitation). The short-term validation performed by calculating chemical composition of the reservoir fluids (corrected for surface conditions) after the simulation of 3 years of CO2 injection is consistent (error ≤5%) with the analytical data of the wellhead water samples collected in 2003, with the exception of Ca and Mg (error N90%), likely due to complexation effect of carboxilic acid.
    Description: Published
    Description: 181-197
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: partially_open
    Keywords: CO2 ; Geochemical modeling ; geological storage ; Fluid geochemistry ; EOR Weyburn Oil Field Brines ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...