ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-11
    Description: Neurogenesis is restricted in the adult mammalian brain; most neurons are neither exchanged during normal life nor replaced in pathological situations. We report that stroke elicits a latent neurogenic program in striatal astrocytes in mice. Notch1 signaling is reduced in astrocytes after stroke, and attenuated Notch1 signaling is necessary for neurogenesis by striatal astrocytes. Blocking Notch signaling triggers astrocytes in the striatum and the medial cortex to enter a neurogenic program, even in the absence of stroke, resulting in 850 +/- 210 (mean +/- SEM) new neurons in a mouse striatum. Thus, under Notch signaling regulation, astrocytes in the adult mouse brain parenchyma carry a latent neurogenic program that may potentially be useful for neuronal replacement strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magnusson, Jens P -- Goritz, Christian -- Tatarishvili, Jemal -- Dias, David O -- Smith, Emma M K -- Lindvall, Olle -- Kokaia, Zaal -- Frisen, Jonas -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):237-41. doi: 10.1126/science.346.6206.237. Epub 2014 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden. ; Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden. ; Division of Translational Cancer Research, Lund University, SE-223 63 Lund, Sweden. ; Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden. jonas.frisen@ki.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology/*physiology ; Corpus Striatum/pathology/physiopathology ; Gene Deletion ; Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neural Stem Cells/cytology/*physiology ; Neurogenesis/genetics/*physiology ; Neurons/cytology/*physiology ; Receptor, Notch1/genetics/*physiology ; *Signal Transduction ; Stroke/pathology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...