ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-05-01
    Description: Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paez, J Guillermo -- Janne, Pasi A -- Lee, Jeffrey C -- Tracy, Sean -- Greulich, Heidi -- Gabriel, Stacey -- Herman, Paula -- Kaye, Frederic J -- Lindeman, Neal -- Boggon, Titus J -- Naoki, Katsuhiko -- Sasaki, Hidefumi -- Fujii, Yoshitaka -- Eck, Michael J -- Sellers, William R -- Johnson, Bruce E -- Meyerson, Matthew -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1497-500. Epub 2004 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/pharmacology/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Cell Line, Tumor ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/pharmacology/therapeutic use ; Female ; *Genes, erbB-1 ; Humans ; Japan ; Lung Neoplasms/drug therapy/*genetics/metabolism ; Male ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Quinazolines/pharmacology/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-28
    Description: The epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are effective treatments for lung cancers with EGFR activating mutations, but these tumors invariably develop drug resistance. Here, we describe a gefitinib-sensitive lung cancer cell line that developed resistance to gefitinib as a result of focal amplification of the MET proto-oncogene. inhibition of MET signaling in these cells restored their sensitivity to gefitinib. MET amplification was detected in 4 of 18 (22%) lung cancer specimens that had developed resistance to gefitinib or erlotinib. We find that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)-dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors. Thus, we propose that MET amplification may promote drug resistance in other ERBB-driven cancers as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engelman, Jeffrey A -- Zejnullahu, Kreshnik -- Mitsudomi, Tetsuya -- Song, Youngchul -- Hyland, Courtney -- Park, Joon Oh -- Lindeman, Neal -- Gale, Christopher-Michael -- Zhao, Xiaojun -- Christensen, James -- Kosaka, Takayuki -- Holmes, Alison J -- Rogers, Andrew M -- Cappuzzo, Federico -- Mok, Tony -- Lee, Charles -- Johnson, Bruce E -- Cantley, Lewis C -- Janne, Pasi A -- 1K12CA87723-01/CA/NCI NIH HHS/ -- GM41890/GM/NIGMS NIH HHS/ -- K08CA120060-01/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P20CA90578-02/CA/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- R01-CA111560/CA/NCI NIH HHS/ -- R01CA114465-01/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 18;316(5827):1039-43. Epub 2007 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; CHO Cells ; Carcinoma, Non-Small-Cell Lung/drug therapy/genetics/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cricetinae ; Cricetulus ; Drug Resistance, Neoplasm ; Enzyme Inhibitors ; *Gene Amplification ; Humans ; Indoles/pharmacology ; Lung Neoplasms/drug therapy/genetics/metabolism/pathology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Proto-Oncogene Proteins c-met ; Quinazolines/*pharmacology/therapeutic use ; Receptor, ErbB-3/*metabolism ; Receptors, Growth Factor/*genetics/metabolism ; *Signal Transduction ; Sulfones/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...