ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Tectonophysics, Leipzig, 3-4, vol. 356, no. 1-3, pp. 5-22, pp. L19606, (ISBN: 0-12-018847-3)
    Publication Date: 2002
    Keywords: Moment tensor ; Seismology ; Earthquake catalog ; Europe
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giardini, Domenico -- England -- Nature. 2009 Dec 17;462(7275):848-9. doi: 10.1038/462848a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Seismological Service, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich, Switzerland. giardini@sed.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016577" target="_blank"〉PubMed〈/a〉
    Keywords: *Earthquakes ; *Energy-Generating Resources/standards ; *Hot Springs ; Public Opinion ; *Risk Management
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Geological and theoretical modeling do indicate that, most probably, a significant part of the volatiles present in the past is presently stocked within the Martian subsurface as ground ice, and as clay minerals (water constitution). The detection of liquid water is of prime interest and should have deep implications in the understanding of the Martian hydrological cycle and also in exobiology. In the frame of the 2005 joint CNES-NASA mission to Mars, a set of 4 NETLANDERs developed by an European consortium is expected to be launched between 2005 and 2007. The geophysical package of each lander will include a geo-radar (GPR experiment), a magnetometer (MAGNET experiment), a seismometer (SEIS experiment) and a meteorological package (ATMIS experiment). The NETLANDER mission offers a unique opportunity to explore simultaneously the subsurface as well as deeper layers of the planetary interior on 4 different landing sites. The complementary contributions of all these geophysical soundings onboard the NETLANDER stations are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 76-77; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Our present understanding of the interior structure of Mars is mostly based on the interpretation of gravity and rotation data, the chemistry of the SNC (shergottites, nakhlites, chassignites) meteoroids, and a comparison with the much better-known interior structure of the Earth. However geophysical information from previous missions have been insufficient to determine the deep internal structure of the planet. Therefore the state and size of the core and the depth and type of mantle discontinuities are unknown. Most previous seismic experiments have indeed failed, either due to a launch failure (as for the Optimism seismometer onboard the small surface stations of Mars 96) or after failure on Mars (as for the Viking 1 seismometer). The remaining Viking 2 seismometer did not produce a convincing marsquake detection, basically due to too strong wind sensitivity and too low resolution in the teleseismic frequency band. After almost a decade of continuous activity and proposals, the first network mission to Mars, NetLander (NL), is expected to be launched between 2005 and 2007. One of the main scientific objectives of this four-lander network mission will be the determination of the internal structure of the planet using a geophysical package. This package will have a seismometer, a magnetometer, and a geodetic experiment, allowing a complementary approach that will yield many new constraints on the mineralogy and temperature of the mantle and core of the planet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 2; 194-195; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: The Mars SEIS experiment. The SEIS experiment was first proposed by IPGP (and accepted) for the NetLander mission. It integrates two VBB (Very Broad Band) seismometers, a three axis Short Period seismometer and a series of environmental sensors for pressure, infra-sounds and temperature. IPGP (France) has the overall responsibility of the experiment and is responsible for the seismic and environmental sensors. ETHZ (Switzerland) is responsible for the electronics of the experiment and JPL (USA) for the SP (Short Period) sensors. As NetLander mission has been cancelled (while fortunately the development still goes on), this seismic package can be proposed for future Mars missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The detection of liquid water is of prime interest and should have deep implications in the understanding of the Martian hydrological cycle and also in exobiology. In the frame of the 2007 joint CNES-NASA mission to Mars, a set of 4 NETLANDERS developed by an European consortium is expected to be launched in June 2007. We propose to use a second spacecraft going or landing to Mars to release near one of the Netlander a series of artificial metallic meteorites, in order to perform an active seismic experiment providing a seismic profile of the crust and subsurface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Conference on the Geophysical Detection of Subsurface Water on Mars; 66-67; LPI-Contrib-1095
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-24
    Description: Slightly less than 50 years after the deployment of Apollo 11 seismometer, and slightly more than 41 years after the operational end of the combined Apollo seismic network, seismology is back to operations in planetary science. InSight, or Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a mission dedicated to understand the formation and evolution of terrestrial planets through the investigation of the interior structure and processes of Mars. This presentation will outline early mission results, focusing primarily on SEIS, the Seismic Experiment for Interior Structure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN73768 , UCF Physics Department Colloquium; Oct 18, 2019; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-07
    Description: The GSHAP CAUCAS test area was established under the INTAS Ct.94-1644 (Test Area for sismic Hazard Assessment in the Caucasus) and NATO ARW Ct.95-1521 (Historical and Prehistorical Earthquakes in the Caucasus), with the initial support of IASPEI, UNESCO and ILP. The high tectonic interest and seismicity rate of the whole area, the availability of abundant multi-disciplinary data and the long established tradition in hazard assessment provide a unique opportunity to test different methodologies in a common test area and attempt to establish some consensus in the scientific community. Starting from the same input data (historical and instrumental seismic catalogue, lineament and homogeneous seismic source models) six independent approaches to seismic hazard assessment have been used, ranging from pure historical deterministic to seismotectonic probabilistic and areal assessment methodologies. The results are here compared.
    Description: JCR Journal
    Description: open
    Keywords: Seismic hazard assessment ; Caucasus ; historical earthquake ; UN/IDNDR ; active faults ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3841063 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-18
    Description: Five Andean countries (Bolivia, Peru, Ecuador, Colombia, Venezuela) and four European countries (Italy, Spain, Holland, Germany) cooperated in the PILOTO program ("Test area for earthquake monitoring and seismic hazard assessment"), launched under GSHAP and sponsored by the European Union (Ct.94-0103) to produce a unified SHA for the Andean region. Activities included the integration of national earthquake catalogues and source zonings in common regional databases and joint technical workshops for the assessment of the regional hazard, expressed in terms of expected peak ground acceleration with 10% exceedance probability in 50 years.
    Description: JCR Journal
    Description: open
    Keywords: Seismic hazard assessment ; Andes ; earthquake ; UN/IDNDR ; South America ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4422716 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-15
    Description: We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg–Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project ‘Seismic HAzard haRmonization in Europe’ (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE’s area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model’s forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10–20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
    Description: EC-Research FP7-projects, SHARE, under grant agreement No. 226967 and NERA, under grant agreement No. 262330
    Description: Published
    Description: 1159-1172
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Probabilistic forecasting ; Statistical seismology ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...