ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-11
    Description: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotzinger, J P -- Sumner, D Y -- Kah, L C -- Stack, K -- Gupta, S -- Edgar, L -- Rubin, D -- Lewis, K -- Schieber, J -- Mangold, N -- Milliken, R -- Conrad, P G -- DesMarais, D -- Farmer, J -- Siebach, K -- Calef, F 3rd -- Hurowitz, J -- McLennan, S M -- Ming, D -- Vaniman, D -- Crisp, J -- Vasavada, A -- Edgett, K S -- Malin, M -- Blake, D -- Gellert, R -- Mahaffy, P -- Wiens, R C -- Maurice, S -- Grant, J A -- Wilson, S -- Anderson, R C -- Beegle, L -- Arvidson, R -- Hallet, B -- Sletten, R S -- Rice, M -- Bell, J 3rd -- Griffes, J -- Ehlmann, B -- Anderson, R B -- Bristow, T F -- Dietrich, W E -- Dromart, G -- Eigenbrode, J -- Fraeman, A -- Hardgrove, C -- Herkenhoff, K -- Jandura, L -- Kocurek, G -- Lee, S -- Leshin, L A -- Leveille, R -- Limonadi, D -- Maki, J -- McCloskey, S -- Meyer, M -- Minitti, M -- Newsom, H -- Oehler, D -- Okon, A -- Palucis, M -- Parker, T -- Rowland, S -- Schmidt, M -- Squyres, S -- Steele, A -- Stolper, E -- Summons, R -- Treiman, A -- Williams, R -- Yingst, A -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1242777. doi: 10.1126/science.1242777. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geologic and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324272" target="_blank"〉PubMed〈/a〉
    Keywords: Bays ; Carbon/analysis ; *Exobiology ; *Extraterrestrial Environment ; Geologic Sediments/analysis/classification ; Hydrogen/analysis ; Hydrogen-Ion Concentration ; Iron/analysis/chemistry ; *Mars ; Nitrogen/analysis ; Oxidation-Reduction ; Oxygen/analysis ; Phosphorus/analysis ; Salinity ; Sulfur/analysis/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters 〉1.3 body radii in diameter suggesting a porous, compressible interior.
    Keywords: Astrophysics
    Type: JSC-CN-27904 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...