ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-03-15
    Description: Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll-IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor-associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor kappaB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Picard, Capucine -- Puel, Anne -- Bonnet, Marion -- Ku, Cheng-Lung -- Bustamante, Jacinta -- Yang, Kun -- Soudais, Claire -- Dupuis, Stephanie -- Feinberg, Jacqueline -- Fieschi, Claire -- Elbim, Carole -- Hitchcock, Remi -- Lammas, David -- Davies, Graham -- Al-Ghonaium, Abdulaziz -- Al-Rayes, Hassan -- Al-Jumaah, Sulaiman -- Al-Hajjar, Sami -- Al-Mohsen, Ibrahim Zaid -- Frayha, Husn H -- Rucker, Rajivi -- Hawn, Thomas R -- Aderem, Alan -- Tufenkeji, Haysam -- Haraguchi, Soichi -- Day, Noorbibi K -- Good, Robert A -- Gougerot-Pocidalo, Marie-Anne -- Ozinsky, Adrian -- Casanova, Jean-Laurent -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2076-9. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Humaine des Maladies Infectieuses, Universite Rene Descartes-INSERM U550, Faculte Necker, 156 rue de Vaugirard, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637671" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Child ; Codon, Terminator ; Cytokines/secretion ; *Drosophila Proteins ; Female ; Fibroblasts/immunology ; Humans ; Interleukin-1 Receptor-Associated Kinases ; Interleukins/immunology/secretion ; Lipopolysaccharides/immunology ; Male ; Membrane Glycoproteins/chemistry/immunology/metabolism ; Monocytes/immunology ; Mutation ; Neutrophils/immunology ; Pedigree ; Phosphotransferases (Alcohol Group Acceptor)/*deficiency/*genetics/metabolism ; Pneumococcal Infections/*immunology/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/immunology/metabolism ; Receptors, Interleukin/immunology ; Receptors, Interleukin-1/chemistry ; Signal Transduction ; Staphylococcal Infections/*immunology/metabolism ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-27
    Description: Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappuoli, Rino -- Aderem, Alan -- England -- Nature. 2011 May 26;473(7348):463-9. doi: 10.1038/nature10124.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Vaccines and Diagnostics, 53100 Siena, Italy. rino.rappuoli@novartis.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21614073" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines/chemistry/immunology ; Animals ; Antigens/chemistry/immunology ; Clinical Trials as Topic ; HIV Infections/epidemiology/immunology/prevention & control ; Humans ; Malaria/epidemiology/immunology/parasitology/prevention & control ; *Malaria Vaccines/chemistry/immunology ; Systems Biology/trends ; Tuberculosis/epidemiology/immunology/microbiology/prevention & control ; *Tuberculosis Vaccines/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...