ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 313-339 
    ISSN: 1573-269X
    Keywords: Power systems ; chaos ; bifurcations ; loss of synchronism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We investigate some of the instabilities in a single-machine quasi-infinite busbar system. The system's behavior is described by the so-called swing equation, which is a nonlinear second-order ordinary-differential equation with additive and multiplicative harmonic terms having the frequency Ω. When Ω≈ω0, where ω0 is the linear natural frequency of the machine, we use digital-computer simulations to exhibit some of the complicated responses of the machine, including period-doubling bifurcations, chaotic motions, and unbounded motions (loss of synchronism). To predict the onset of these complicated behaviors, we use the method of multiple scales to develop an approximate first-order closed-form expression for the period-one responses of the machine. Then, we use various techniques to determine the stability of the analytical solutions. The analytically predicted period-one solutions and conditions for its instability are in good agreement with the digital-computer results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 2 (1991), S. 53-72 
    ISSN: 1573-269X
    Keywords: Power systems ; loss of synchronism ; chaos ; bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The response of a single-machine quasi-infinite busbar system to the simultaneous occurrence of principal parametric resonance and subharmonic resonance of order one-half is investigated. By numerical simulations we show the existence of oscillatory solutions (limit cycles), period-doubling bifurcations, chaos, and unbounded motions (loss of synchronism). The method of multiple scales is used to derive a second-order analytical solution that predicts (a) the onset of period-doubling bifurcations, which is a precursor to chaos and unbounded motions (loss of synchronism), and (b) saddle-node bifurcations, which may be precursors to loss of synchronism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-01
    Description: In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elshenawy, Mohamed M -- Jergic, Slobodan -- Xu, Zhi-Qiang -- Sobhy, Mohamed A -- Takahashi, Masateru -- Oakley, Aaron J -- Dixon, Nicholas E -- Hamdan, Samir M -- England -- Nature. 2015 Sep 17;525(7569):394-8. doi: 10.1038/nature14866. Epub 2015 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia. ; Centre for Medical &Molecular Bioscience, Illawarra Health &Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26322585" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Chromosomes, Bacterial/genetics/metabolism ; Crystallography, X-Ray ; *DNA Replication ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Kinetics ; Models, Biological ; Models, Molecular ; Movement ; Multienzyme Complexes/chemistry/*metabolism ; Protein Conformation ; Regulatory Sequences, Nucleic Acid/*genetics ; Surface Plasmon Resonance ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology; Life Sciences (General)
    Type: MSFC-E-DAA-TN20201 , American Meteorological Society; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States|Environment and Health; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wideranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S
    Keywords: Meteorology and Climatology; Life Sciences (General)
    Type: M13-2921 , American Geophysical Union Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...