ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-21
    Description: Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376633/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376633/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Penzo, Mario A -- Robert, Vincent -- Tucciarone, Jason -- De Bundel, Dimitri -- Wang, Minghui -- Van Aelst, Linda -- Darvas, Martin -- Parada, Luis F -- Palmiter, Richard D -- He, Miao -- Huang, Z Josh -- Li, Bo -- R01 MH082808/MH/NIMH NIH HHS/ -- R01 MH094705/MH/NIMH NIH HHS/ -- R01 MH101214/MH/NIMH NIH HHS/ -- R01 NS082266/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 26;519(7544):455-9. doi: 10.1038/nature13978. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Ecole Normale Superieure de Cachan, 94230 Cachan, France. ; 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Medical Scientist Training Program &Program in Neuroscience, Stony Brook University, Stony Brook, New York 11790, USA. ; CNRS, UMR-5203, INSERM U661, Institut de Genomique Fonctionnelle, 34090 Montpellier, France. ; Department of Pathology, University of Washington, Seattle, Washington 98104, USA. ; Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Howard Hughes Medical Institute; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/metabolism ; Central Amygdaloid Nucleus/cytology/*physiology ; Conditioning (Psychology)/physiology ; Fear/*physiology/psychology ; Female ; Male ; Memory/physiology ; Mice ; Neural Pathways/cytology/*physiology ; Neuronal Plasticity ; Neurons/metabolism ; Receptor, trkB/metabolism ; Somatostatin/metabolism ; Thalamus/cytology/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-08
    Description: In the mammalian cerebral cortex the diversity of interneuronal subtypes underlies a division of labour subserving distinct modes of inhibitory control. A unique mode of inhibitory control may be provided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons. Such disinhibition could lead to the selective amplification of local processing and serve the important computational functions of gating and gain modulation. Although several interneuron populations are known to target other interneurons to varying degrees, little is known about interneurons specializing in disinhibition and their in vivo function. Here we show that a class of interneurons that express vasoactive intestinal polypeptide (VIP) mediates disinhibitory control in multiple areas of neocortex and is recruited by reinforcement signals. By combining optogenetic activation with single-cell recordings, we examined the functional role of VIP interneurons in awake mice, and investigated the underlying circuit mechanisms in vitro in auditory and medial prefrontal cortices. We identified a basic disinhibitory circuit module in which activation of VIP interneurons transiently suppresses primarily somatostatin- and a fraction of parvalbumin-expressing inhibitory interneurons that specialize in the control of the input and output of principal cells, respectively. During the performance of an auditory discrimination task, reinforcement signals (reward and punishment) strongly and uniformly activated VIP neurons in auditory cortex, and in turn VIP recruitment increased the gain of a functional subpopulation of principal neurons. These results reveal a specific cell type and microcircuit underlying disinhibitory control in cortex and demonstrate that it is activated under specific behavioural conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pi, Hyun-Jae -- Hangya, Balazs -- Kvitsiani, Duda -- Sanders, Joshua I -- Huang, Z Josh -- Kepecs, Adam -- R01 NS075531/NS/NINDS NIH HHS/ -- R01NS075531/NS/NINDS NIH HHS/ -- U01 MH078844/MH/NIMH NIH HHS/ -- U01MH078844/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):521-4. doi: 10.1038/nature12676. Epub 2013 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24097352" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Auditory Cortex/physiology ; Cerebral Cortex/*cytology/*physiology ; Discrimination (Psychology)/physiology ; Female ; Interneurons/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Inhibition/*physiology ; Optogenetics ; Parvalbumins/metabolism ; Prefrontal Cortex/physiology ; Punishment ; Reward ; Single-Cell Analysis ; Somatostatin/metabolism ; Vasoactive Intestinal Peptide/metabolism ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-03
    Description: The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo-axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory-motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2-expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink, Andrew J P -- Croce, Katherine R -- Huang, Z Josh -- Abbott, L F -- Jessell, Thomas M -- Azim, Eiman -- MH078844/MH/NIMH NIH HHS/ -- MH093338/MH/NIMH NIH HHS/ -- NS033245/NS/NINDS NIH HHS/ -- R01 MH093338/MH/NIMH NIH HHS/ -- R01 NS033245/NS/NINDS NIH HHS/ -- R01 NS080932/NS/NINDS NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- U01 MH078844/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 1;509(7498):43-8. doi: 10.1038/nature13276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Center for Theoretical Neuroscience, Departments of Physiology and Neuroscience, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784215" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Efferent Pathways/physiology ; Feedback, Sensory/*physiology ; Female ; Forelimb/physiology ; GABAergic Neurons/cytology/metabolism ; Glutamate Decarboxylase/genetics/metabolism ; Interneurons/cytology/metabolism ; Male ; Mice ; Models, Neurological ; Motor Skills/*physiology ; Movement/*physiology ; Neural Inhibition/*physiology ; Neurotransmitter Agents/secretion ; Presynaptic Terminals/*physiology ; Spinal Cord/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-31
    Description: Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter gamma-aminobutyric acid (GABA) by means of gamma2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of gamma2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Juan -- Zhong, Chun -- Bonaguidi, Michael A -- Sun, Gerald J -- Hsu, Derek -- Gu, Yan -- Meletis, Konstantinos -- Huang, Z Josh -- Ge, Shaoyu -- Enikolopov, Grigori -- Deisseroth, Karl -- Luscher, Bernhard -- Christian, Kimberly M -- Ming, Guo-li -- Song, Hongjun -- AG040209/AG/NIA NIH HHS/ -- HD069184/HD/NICHD NIH HHS/ -- MH089111/MH/NIMH NIH HHS/ -- NS048271/NS/NINDS NIH HHS/ -- R01 AG040209/AG/NIA NIH HHS/ -- R01 HD069184/HD/NICHD NIH HHS/ -- R01 NS047344/NS/NINDS NIH HHS/ -- R01 NS048271/NS/NINDS NIH HHS/ -- R01 NS065915/NS/NINDS NIH HHS/ -- R21 ES021957/ES/NIEHS NIH HHS/ -- R56 NS047344/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):150-4. doi: 10.1038/nature11306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22842902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage/drug effects ; Cell Proliferation/drug effects ; Dentate Gyrus/cytology/drug effects/metabolism ; Female ; GABA Modulators/pharmacology ; GABA-A Receptor Agonists/pharmacology ; GABA-A Receptor Antagonists/pharmacology ; Interneurons/cytology/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neural Stem Cells/*cytology/drug effects/metabolism ; *Neurogenesis/drug effects ; Neuroglia/cytology/drug effects/metabolism ; Parvalbumins/metabolism ; Receptors, GABA-A/metabolism ; Signal Transduction/drug effects ; Somatostatin/metabolism ; Stem Cell Niche/drug effects/physiology ; Vasoactive Intestinal Peptide/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-28
    Description: Diverse gamma-aminobutyric acid-releasing interneurons regulate the functional organization of cortical circuits and derive from multiple embryonic sources. It remains unclear to what extent embryonic origin influences interneuron specification and cortical integration because of difficulties in tracking defined cell types. Here, we followed the developmental trajectory of chandelier cells (ChCs), the most distinct interneurons that innervate the axon initial segment of pyramidal neurons and control action potential initiation. ChCs mainly derive from the ventral germinal zone of the lateral ventricle during late gestation and require the homeodomain protein Nkx2.1 for their specification. They migrate with stereotyped routes and schedule and achieve specific laminar distribution in the cortex. The developmental specification of this bona fide interneuron type likely contributes to the assembly of a cortical circuit motif.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taniguchi, Hiroki -- Lu, Jiangteng -- Huang, Z Josh -- R01 MH094705/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 4;339(6115):70-4. doi: 10.1126/science.1227622. Epub 2012 Nov 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180771" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Female ; Interneurons/metabolism/*physiology ; Lateral Ventricles/cytology/embryology ; Mice ; Mice, Mutant Strains ; Neocortex/*cytology/embryology ; Neural Stem Cells/metabolism ; Nuclear Proteins/genetics/metabolism ; Pyramidal Cells/metabolism/*physiology ; Transcription Factors/genetics/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...