ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Epigenesis, Genetic  (2)
  • *Carnivora/anatomy & histology/classification/physiology  (1)
  • *Food Chain  (1)
  • 1
    Publication Date: 2012-06-16
    Description: Aboveground consumers are believed to affect ecosystem functioning by regulating the quantity and quality of plant litter entering the soil. We uncovered a pathway whereby terrestrial predators regulate ecosystem processes via indirect control over soil community function. Grasshopper herbivores stressed by spider predators have a higher body carbon-to-nitrogen ratio than do grasshoppers raised without spiders. This change in elemental content does not slow grasshopper decomposition but perturbs belowground community function, decelerating the subsequent decomposition of plant litter. This legacy effect of predation on soil community function appears to be regulated by the amount of herbivore protein entering the soil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawlena, Dror -- Strickland, Michael S -- Bradford, Mark A -- Schmitz, Oswald J -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1434-8. doi: 10.1126/science.1220097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT 06511, USA. dror.hawlena@mail.huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/metabolism ; Biomass ; Carbon/analysis/metabolism ; Ecosystem ; Energy Metabolism ; Fear ; *Food Chain ; Grasshoppers/chemistry/*physiology ; Herbivory/physiology ; Insect Proteins/analysis/metabolism ; Nitrogen/analysis/metabolism ; *Plants ; *Predatory Behavior ; Soil/chemistry ; *Soil Microbiology ; Spiders/*physiology ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-17
    Description: Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations. We identified 114,287 CG single methylation polymorphisms and 2485 CG differentially methylated regions (DMRs), both of which show patterns of divergence compared with the ancestral state. Thus, transgenerational epigenetic variation in DNA methylation may generate new allelic states that alter transcription, providing a mechanism for phenotypic diversity in the absence of genetic mutation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- Schultz, Matthew D -- Lewsey, Mathew G -- O'Malley, Ronan C -- Urich, Mark A -- Libiger, Ondrej -- Schork, Nicholas J -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32 HG004830-01/HG/NHGRI NIH HHS/ -- F32 HG004830-02/HG/NHGRI NIH HHS/ -- F32 HG004830-03/HG/NHGRI NIH HHS/ -- F32-HG004830/HG/NHGRI NIH HHS/ -- R01 HG003523/HG/NHGRI NIH HHS/ -- R01 HG003523-01/HG/NHGRI NIH HHS/ -- R01 HG003523-02/HG/NHGRI NIH HHS/ -- R01 HG003523-03/HG/NHGRI NIH HHS/ -- UL1 RR025774/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):369-73. doi: 10.1126/science.1212959. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921155" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/metabolism ; *DNA Methylation ; DNA Transposable Elements ; DNA, Intergenic ; DNA, Plant/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; *Epigenesis, Genetic ; Genes, Plant ; Genetic Variation ; Genome, Plant ; Linear Models ; Mutation ; Polymorphism, Genetic ; Promoter Regions, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-11
    Description: Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ripple, William J -- Estes, James A -- Beschta, Robert L -- Wilmers, Christopher C -- Ritchie, Euan G -- Hebblewhite, Mark -- Berger, Joel -- Elmhagen, Bodil -- Letnic, Mike -- Nelson, Michael P -- Schmitz, Oswald J -- Smith, Douglas W -- Wallach, Arian D -- Wirsing, Aaron J -- New York, N.Y. -- Science. 2014 Jan 10;343(6167):1241484. doi: 10.1126/science.1241484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24408439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora/anatomy & histology/classification/physiology ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans ; Meat Products/statistics & numerical data ; Oceans and Seas ; Plants ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1082-3. doi: 10.1126/science.1251864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604184" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; DNA Methylation/*genetics ; *Epigenesis, Genetic ; *Gene Expression Regulation, Plant ; *Quantitative Trait Loci
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...