ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (5)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: On 2009 April 6, the Central Apennines were hit by an Mw = 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw 〉 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE–SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault systemwas activated with respect to the SW-dipping normal faults beneath L’Aquila and more to the north.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: moment tensor ; seismotectonics ; L'Aquila ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Although characterized by low seismicity, the Monferrato area of north-western Italy was affected by earthquakes, of magnitude M5.1 and M4.8, in 2000 and 2001. At the same time, marked changes were recorded in water temperature and chemistry in several wells within the epicentral area. In May 2004, an automatic network for the continuous monitoring of groundwater was installed in selected wells to study the phenomenon. Here, we report on data collected during a 3-year period of groundwater monitoring. During the first year, episodes of water heating (by up to 20°C) were observed in one monitored well. The temporal analysis of the seismic activity recorded in the area revealed as almost all seismic events occurred during the period of elevated water temperatures. The similar timing of earthquakes and groundwater-temperature anomalies suggests that both may be triggered by the same processes acting in the crust.
    Description: Published
    Description: 142-149
    Description: JCR Journal
    Description: reserved
    Keywords: groundwater monitoring ; pore fluid pressure; ; tectonic stress ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: With the goal of constructing a homogeneous data set of moment magnitudes (Mw) to be used for seismic hazard assessment, we compared Mw estimates from moment tensor catalogues available online. We found an apparent scaling disagreement between Mw estimates from the National Earthquake Information Center (NEIC) of the US Geological Survey and from the Global Centroid Moment Tensor (GCMT) project. We suspect that this is the effect of an underestimation ofMw 〉 7.0 (M0 〉 4.0 × 1019 Nm) computed by NEIC owing to the limitations of their computational approach. We also found an apparent scaling disagreement between GCMT and two regional moment tensor catalogues provided by the ‘Eidgen¨ossische Technische Hochschule Z¨urich’ (ETHZ) and by the European–Mediterranean Regional Centroid Moment Tensor (RCMT) project of the Italian ‘Istituto Nazionale di Geofisica e Vulcanologia’ (INGV). This is probably the effect of the overestimation of Mw 〈 5.5 (M0 〈 2.2 × 1017 Nm), up to year 2002, and of Mw 〈 5.0 (M0 〈 4.0 × 1016 Nm), since year 2003, owing to the physical limitations of the standard CMT inversion method used by GCMT for the earthquakes of relatively low magnitude. If the discrepant data are excluded from the comparisons, the scaling disagreements become insignificant in all cases. We observed instead small absolute offsets (≤0.1 units) for NEIC and ETHZ catalogues with respect to GCMT whereas there is an almost perfect correspondence between RCMT and GCMT. Finally, we found a clear underestimation of about 0.2 units of Mw magnitudes computed at the INGV using the time-domain moment tensor (TDMT) method with respect to those reported by GCMT and RCMT. According to our results, we suggest appropriate offset corrections to be applied to Mw estimates from NEIC, ETHZ and TDMT catalogues before merging their data with GCMT and RCMT catalogues. We suggest as well to discard the probably discrepant data from NEIC and GCMT if other Mw estimates from different sources are available for the same earthquakes. We also estimate approximately the average uncertainty of individual Mw estimates to be about 0.07 magnitude units for the GCMT, NEIC, RCMT and ETHZ catalogues and about 0.13 for the TDMT catalogue.
    Description: European Union research project SHARE (Seismic Hazard Harmonization in Europe), within the ambit of Task 3.1 ‘European Earthquake Database’
    Description: Published
    Description: 1733-1745
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; Statistical seismology ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The study of the health of a building connects humanistic and scientific research, and a complete characterization can be achieved by integrating all the available historical documentation, architectural and metrological studies, as well as laboratory and in situ analyses of the materials. A contactless, non-invasive surveying technique such as terrestrial laser scanning (TLS) allows the acquisition of dense and accurate geometric and radiometric (electromagnetic measurements such as signal intensity) information about the observed surface of the building, which can be easily integrated with data provided by high-resolution digital imaging. The early Christian Cantalovo church was surveyed for the first time in April 2011, by means of the ILRIS-3D ER very long range scanner. The second and last survey was performed in June 2012, after the main shocks of the Emilia earthquake seismic sequence. A very long range instrument is suitable for fast, simple and independent measurements, due to its technical characteristics and, for this reason, is easily usable for accurate surveying in emergency conditions. The main results are obtained by applying a data analysis strategy based on the creation of TLS-based morphological maps computed as point-to-primitive differences, which allow the creation of a deformation map and its evolution in time.
    Description: Published
    Description: 703-716
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Terrestrial Laser Scanning ; Deformation ; Earthquake ; Ancient Building ; Procedure Standardization ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-25
    Description: Here we inverted the GPS data to infer the coseismic slip of the Tohoku-Oki earthquake and the time-dependent afterslip distribution in the 4 months following the main shock. The Tohoku-Oki earthquake showed an unexpected magnitude and a characteristic depth-dependent differentiation of seismic energy radiation. In this context the estimation and comparison of the distribution of the fault portions that slip coseismically and post-seismically contribute to a better understanding of the variation of frictional characteristics of the plate interface. The inferred coseismic slip extends in a relatively compact region located updip from the hypocentre and reaches its highest value (about 60 m) near the trench. Afterslip occurs mostly outside the coseismic rupture and is distributed in two main modal centres. It reaches its largest values in an area located downdip of the coseismic slip and extends to a depth of 80 km. In the depth range between 30 and 50 km afterslip overlaps the portion of the fault that experienced historical moderate earthquakes, high-frequency seismic radiation and thrust-type aftershocks. The behaviour of this area can be explained by a rheologically heterogeneous region made of a ductile fault matrix interspersed with compact brittle asperities. On the contrary, the region beneath 50–60 km depth is probably characterized by a fully velocity strengthening behaviour. Southern afterslip, located off-Chiba Prefecture, is probably related to the Mw 7.9 Ibaraki-Oki aftershock. The northward extension of the afterslip stops at a latitude of about 40◦ N, just south of the off-Aomori region. This may be related to three large events occurred in this area during the last century and the consequent strong coupling or complete depletion of the accumulated strain that characterize this region.
    Description: Published
    Description: 580-596
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy; Seismic cycle; Earthquake source observations; Subduction zone processes ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...