ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-22
    Description: The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Sentinel-6 ; Jason-CS ; Single-receiver ambiguity fixing ; Precise orbit determination ; GPS ; Galileo ; SLR ; Altimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-16
    Description: The feasibility of precise real-time orbit determination of low earth orbit satellites using onboard GNSS observations is assessed using six months of flight data from the Sentinel-6A mission. Based on offline processing of dual-constellation pseudorange and carrier phase measurements as well as broadcast ephemerides in a sequential filter with a reduced dynamic force model, navigation solutions with a representative position error of 10 cm (3D RMS) are achieved. The overall performance is largely enabled by the superior quality of the Galileo broadcast ephemerides, which exhibits a two- to three-times smaller signal-in-space-range error than GPS and allows for geodetic-grade GNSS real-time orbit determination without a need for external correction services. Compared to GPS-only processing, a roughly two-times better navigation accuracy is achieved in a Galileo-only or mixed GPS/Galileo processing. On the other hand, GPS tracking offers a useful complement and additional robustness in view of a still incomplete Galileo constellation. Furthermore, it provides improved autonomy of the navigation process through the availability of earth orientation parameters in the new civil navigation message of the L2C signal. Overall, GNSS-based onboard orbit determination can now reach a similar performance as the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) navigation system. It lends itself as a viable alternative for future remote sensing missions.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Orbit determination ; Broadcast ephemerides ; LEO satellites ; Galileo ; Sentinel-6 ; DORIS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-16
    Description: For more than 20 years, precise point positioning (PPP) has been a well-established technique for carrier phase-based navigation. Traditionally, it relies on precise orbit and clock products to achieve accuracies in the order of centimeters. With the modernization of legacy GNSS constellations and the introduction of new systems such as Galileo, a continued reduction in the signal-in-space range error (SISRE) can be observed. Supported by this fact, we analyze the feasibility and performance of PPP with broadcast ephemerides and observations of Galileo and GPS. Two different functional models for compensation of SISREs are assessed: process noise in the ambiguity states and the explicit estimation of a SISRE state for each channel. Tests performed with permanent reference stations show that the position can be estimated in kinematic conditions with an average three-dimensional (3D) root mean square (RMS) error of 29 cm for Galileo and 63 cm for GPS. Dual-constellation solutions can further improve the accuracy to 25 cm. Compared to standard algorithms without SISRE compensation, the proposed PPP approaches offer a 40% performance improvement for Galileo and 70% for GPS when working with broadcast ephemerides. An additional test with observations taken on a boat ride yielded 3D RMS accuracy of 39 cm for Galileo, 41 cm for GPS, and 27 cm for dual-constellation processing compared to a real-time kinematic reference solution. Compared to the use of process noise in the phase ambiguity estimation, the explicit estimation of SISRE states yields a slightly improved robustness and accuracy at the expense of increased algorithmic complexity. Overall, the test results demonstrate that the application of broadcast ephemerides in a PPP model is feasible with modern GNSS constellations and able to reach accuracies in the order of few decimeters when using proper SISRE compensation techniques.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Precise point positioning ; GPS ; Galileo ; Broadcast ephemerides ; Signal-in-space range error
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-22
    Description: February‐March 2020 was marked by highly anomalous large‐scale circulations in the Northern extratropical troposphere and stratosphere. The Atlantic jet reached extreme strength, linked to some of the strongest and most persistent positive values of the Arctic Oscillation index on record, which provided conditions for extreme windstorms hitting Europe. Likewise, the stratospheric polar vortex reached extreme strength that persisted for an unusually long period. Past research indicated that such circulation extremes occurring throughout the troposphere‐stratosphere system are dynamically coupled, although the nature of this coupling is still not fully understood and generally difficult to quantify. We employ sets of numerical ensemble simulations to statistically characterize the mutual coupling of the early 2020 extremes. We find the extreme vortex strength to be linked to the reflection of upward propagating planetary waves and the occurrence of this reflection to be sensitive to the details of the vortex structure. Our results show an overall robust coupling between tropospheric and stratospheric anomalies: ensemble members with polar vortex exceeding a certain strength tend to exhibit a stronger tropospheric jet and vice versa. Moreover, members exhibiting a breakdown of the stratospheric circulation (e.g., sudden stratospheric warming) tend to lack periods of persistently enhanced tropospheric circulation. Despite indications for vertical coupling, our simulations underline the role of internal variability within each atmospheric layer. The circulation extremes during early 2020 may be viewed as resulting from a fortuitous alignment of dynamical evolutions within the troposphere and stratosphere, aided by each layer's modification of the other layer's boundary condition.
    Description: Key Points Large‐ensemble simulations are needed to fully characterize coupled extremes in the polar vortex and tropospheric jet in early 2020. Details of the vortex structure play an important role in promoting either reflection or dissipation of upward propagating waves 1 and/or 2. Modulation of lowermost stratospheric circulation from above and below facilitates co‐evolution of tropospheric and stratospheric extremes.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
    Description: https://doi.org/10.5282/ubm/data.281
    Description: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-06
    Description: Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
    Description: Plain Language Summary: Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science.
    Description: Key Points: A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state. The VED's latent space can distinguish convective regimes, including shallow/deep/no convection. The VED's latent space reveals the main sources of convective predictability at different latitudes.
    Description: EC ERC HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: Columbia sub‐award 1
    Description: Advanced Research Projects Agency - Energy http://dx.doi.org/10.13039/100006133
    Description: Deutsches Klimarechenzentrum http://dx.doi.org/10.13039/100018730
    Description: National Science Foundation Science and Technology Center Learning the Earth with Artificial intelligence and Physics
    Keywords: ddc:551.5 ; machine learning ; generative deep learning ; convection ; parameterization ; explainable artificial intelligence ; dimensionality reduction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-16
    Description: GPS Block IIF satellites are able to redistribute the transmit power between the signal components. This ability is called flex power, and it has been developed as a remedy against jamming. Since it is operationally not possible to increase the transmit power for all signal components simultaneously, a redistribution between them is necessary under certain operational situations. Flex power has been active on Block IIF satellites since January 2017 over a specific regional area and has an impact on differential code bias estimation as well as the signal-to-noise density ratio. A network of the International GNSS Service stations containing only Septentrio PolaRx5 and PolaRx5TR receivers between August 1 and November 21, 2019 has been used for differential code bias estimation using GPS L1 C/A, L1 P(Y), L2 P(Y), and L2C signals with and without consideration of the flex power in the estimation process for Block IIF satellites. The estimation results are compared with the German Aerospace Center as well as the Chinese Academy of Sciences DCB products to validate the results.
    Keywords: ddc:526 ; Differential Code Biases ; Flex Power ; GPS Block IIF
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-05
    Description: A promising approach to improve cloud parameterizations within climate models and thus climate projections is to use deep learning in combination with training data from storm‐resolving model (SRM) simulations. The ICOsahedral Non‐hydrostatic (ICON) modeling framework permits simulations ranging from numerical weather prediction to climate projections, making it an ideal target to develop neural network (NN) based parameterizations for sub‐grid scale processes. Within the ICON framework, we train NN based cloud cover parameterizations with coarse‐grained data based on realistic regional and global ICON SRM simulations. We set up three different types of NNs that differ in the degree of vertical locality they assume for diagnosing cloud cover from coarse‐grained atmospheric state variables. The NNs accurately estimate sub‐grid scale cloud cover from coarse‐grained data that has similar geographical characteristics as their training data. Additionally, globally trained NNs can reproduce sub‐grid scale cloud cover of the regional SRM simulation. Using the game‐theory based interpretability library SHapley Additive exPlanations, we identify an overemphasis on specific humidity and cloud ice as the reason why our column‐based NN cannot perfectly generalize from the global to the regional coarse‐grained SRM data. The interpretability tool also helps visualize similarities and differences in feature importance between regionally and globally trained column‐based NNs, and reveals a local relationship between their cloud cover predictions and the thermodynamic environment. Our results show the potential of deep learning to derive accurate yet interpretable cloud cover parameterizations from global SRMs, and suggest that neighborhood‐based models may be a good compromise between accuracy and generalizability.
    Description: Plain Language Summary: Climate models, such as the ICOsahedral Non‐hydrostatic climate model, operate on low‐resolution grids, making it computationally feasible to use them for climate projections. However, physical processes –especially those associated with clouds– that happen on a sub‐grid scale (inside a grid box) cannot be resolved, yet they are critical for the climate. In this study, we train neural networks that return the cloudy fraction of a grid box knowing only low‐resolution grid‐box averaged variables (such as temperature, pressure, etc.) as the climate model sees them. We find that the neural networks can reproduce the sub‐grid scale cloud fraction on data sets similar to the one they were trained on. The networks trained on global data also prove to be applicable on regional data coming from a model simulation with an entirely different setup. Since neural networks are often described as black boxes that are therefore difficult to trust, we peek inside the black box to reveal what input features the neural networks have learned to focus on and in what respect the networks differ. Overall, the neural networks prove to be accurate methods of reproducing sub‐grid scale cloudiness and could improve climate model projections when implemented in a climate model.
    Description: Key Points: Neural networks can accurately learn sub‐grid scale cloud cover from realistic regional and global storm‐resolving simulations. Three neural network types account for different degrees of vertical locality and differentiate between cloud volume and cloud area fraction. Using a game theory based library we find that the neural networks tend to learn local mappings and are able to explain model errors.
    Description: EC ERC HORIZON EUROPE European Research Council
    Description: Partnership for Advanced Computing in Europe (PRACE)
    Description: NSF Science and Technology Center, Center for Learning the Earth with Artificial Intelligence and Physics (LEAP)
    Description: Deutsches Klimarechenzentrum
    Description: Columbia sub‐award 1
    Description: https://github.com/agrundner24/iconml_clc
    Description: https://doi.org/10.5281/zenodo.5788873
    Description: https://code.mpimet.mpg.de/projects/iconpublic
    Keywords: ddc:551.5 ; cloud cover ; parameterization ; machine learning ; neural network ; explainable AI ; SHAP
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-21
    Description: Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO〈sub〉2 〈/sub〉 concentration have previously been identified in Earth system models participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here, we examine whether two of these emergent constraints also hold for CMIP6. The spread of the sensitivity of tropical land carbon uptake to tropical warming in an idealized simulation with a 1% per year increase of atmospheric CO〈sub〉2 〈/sub〉 shows only a slight decrease in CMIP6 (−52 ± 35 GtC/K) compared to CMIP5 (−49 ± 40 GtC/K). For both model generations, the observed interannual variability in the growth rate of atmospheric CO〈sub〉2 〈/sub〉 yields a consistent emergent constraint on the sensitivity of tropical land carbon uptake with a constrained range of −37 ± 14 GtC/K for the combined ensemble (i.e., a reduction of ∼30% in the best estimate and 60% in the uncertainty range relative to the multimodel mean of the combined ensemble). A further emergent constraint is based on a relationship between CO〈sub〉2 〈/sub〉 fertilization and the historical increase in the CO〈sub〉2 〈/sub〉 seasonal cycle amplitude in high latitudes. However, this emergent constraint is not evident in CMIP6. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Plain Language Summary: The statistical model of so‐called emergent constraints help to better understand the sensitivity of Earth system processes in a changing climate. Here, we analyze the robustness of two previously found emergent constraints on carbon cycle feedbacks, using models from the Coupled Model Intercomparison Project (CMIP) of Phases 5 and 6. First the decrease of carbon storage in the tropics due to increasing near‐surface air temperatures, which is found to be robust on the choise of model ensemble. Giving a constraint estimate of −52 ± 35 GtC/K for CMIP6 models, being within the range of uncertainty for the previously estimated result for CMIP5. Second, the increase of carbon storage in high latitudes due to CO〈sub〉2 〈/sub〉 fertilization effect, which is found to be not evident among CMIP6 models. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Key Points: An emergent constraint on the sensitivity of tropical land carbon to global warming, originally derived from Coupled Model Intercomparison Project Phase 5 (CMIP5), also holds for CMIP6. The combined CMIP5 + CMIP6 ensemble gives an emergent constraint on the sensitivity of tropical land carbon to global warming of −37 ± 14 GtC/K. An emergent constraint on the fertilization feedback due to rising CO〈sub〉2 〈/sub〉 levels, previously derived, is not evident in CMIP6.
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: ERC
    Description: https://doi.org/10.5281/zenodo.6900341
    Description: https://doi.org/10.5281/zenodo.3387139
    Description: https://github.com/ESMValGroup
    Description: https://docs.esmvaltool.org/
    Keywords: ddc:551 ; carbon cycle ; emergent constraint ; CMIP5 ; CMIP6 ; fertilization effect ; temperature warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-28
    Description: Horizontal gravity wave (GW) refraction was observed around the Andes and Drake Passage during the SouthTRAC campaign. GWs interact with the background wind through refraction and dissipation. This interaction helps to drive midatmospheric circulations and slows down the polar vortex by taking GW momentum flux (GWMF) from one location to another. The SouthTRAC campaign was composed to gain improved understanding of the propagation and dissipation of GWs. This study uses observational data from this campaign collected by the German High Altitude Long Range research aircraft on 12 September 2019. During the campaign a minor sudden stratospheric warming in the southern hemisphere occurred, which heavily influenced GW propagation and refraction and thus also the location and amount of GWMF deposition. Observations include measurements from below the aircraft by Gimballed Limb Observer for Radiance Imaging of the Atmosphere and above the aircraft by Airborne Lidar for the Middle Atmosphere. Refraction is identified in two different GW packets as low as ≈4 km and as high as 58 km. One GW packet of orographic origin and one of nonorographic origin is used to investigate refraction. Observations are supplemented by the Gravity‐wave Regional Or Global Ray Tracer, a simplified mountain wave model, ERA5 data and high‐resolution (3 km) WRF data. Contrary to some previous studies we find that refraction makes a noteworthy contribution in the amount and the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Plain Language Summary: Gravity waves (GWs) are very important for models to reproduce a midatmospheric circulations. But the fact is that models oversimplify the GW physics which results in GWs being underrepresented in models. GW refraction is one of the processes not captured by the physics in model parameterization schemes. This article uses high‐resolution observations from the SouthTRAC campaign to show how GWs refract and highlight the importance there‐of. This case study shows a 25% increase in the GWMF during propagation. The increase in momentum flux is linked to refraction which results in a shortening in the GW horizontal wavelength. This article shows that refraction is important for the amount as well as the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Key Points: A case study reveals that refraction results in a 25% increase in gravity wave momentum flux (GWMF). Including refraction dynamics affects the location of GWMF deposition. Refraction is prominent in strong wind gradients (i.e., displaced vortex conditions).
    Description: ANPCYT PICT
    Description: DFG
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Instituto de Física de Buenos Aires
    Description: SNCAD MinCyT initiative
    Description: HALO‐SPP
    Description: ROMIC WASCLIM
    Description: https://doi.org/10.5281/zenodo.6997443
    Description: https://cds.climate.copernicus.eu/cdsapp%23%21/home
    Keywords: ddc:551.5 ; gravity wave ; mountain wave ; refraction ; Andes ; Drake Passage ; gravity wave momentum flux
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-06
    Description: Trade wind convection organises into a rich spectrum of spatial patterns, often in conjunction with precipitation development. Which role spatial organisation plays for precipitation and vice versa is not well understood. We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We find that the mean rain rate (i.e., the amount of precipitation in a scene) and the intensity of precipitation (mean conditional rain rate) relate differently to the spatial pattern of precipitation. Whereas the amount of precipitation increases with mean cell size or number, as it scales well with the precipitation fraction, the intensity increases predominantly with mean cell size. In dry scenes, the increase of precipitation intensity with mean cell size is stronger than in moist scenes. Dry scenes usually contain fewer cells with a higher degree of clustering than moist scenes do. High precipitation intensities hence typically occur in dry scenes with rather large, few, and strongly clustered cells, whereas high precipitation amounts typically occur in moist scenes with rather large, numerous, and weakly clustered cells. As cell size influences both the intensity and amount of precipitation, its importance is highlighted. Our analyses suggest that the cells' spatial arrangement, correlating mainly weakly with precipitation characteristics, is of second‐order importance for precipitation across all regimes, but it could be important for high precipitation intensities and to maintain precipitation amounts in dry environments.
    Description: We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We conclude that the cells' size is important for both the amount and intensity of precipitation, whereas the cells' spatial arrangement is of second‐order importance for precipitation across all regimes, but possibly important for precipitation in dry environments.
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2037 'CLICCS—Climate, Climatic Change, and Society'
    Description: https://doi.org/10.25326/217
    Description: https://doi.org/10.25326/79
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...