ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (4)
  • 1
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Deficiency of liver arginase (AI) is characterized clinically by hyperargininemia, progressive mental impairment, growth retardation, spasticity, and periodic episodes of hyperammonemia. The rarest of the inborn errors of urea cycle enzymes, it has been considered the least life-threatening, by virtue of the typical absence of catastrophic neonatal hyperammonemia and its compatibility with a longer life span. This has been attributed to the persistence of some ureagenesis in these patients through the activity of a second isozyme of arginase (AII) located predominantly in the kidney. We have treated a number of arginase-deficient patients into young adulthood. While they are severely retarded and wheelchairbound, their general medical care has been quite tractable. Recently, however, two of the oldest (M.U., age 20, and M.O., age 22) underwent rapid deterioration, ending in hyperammonemic coma and death, precipitated by relatively minor viral respiratory illnesses inducing a catabolic state with increased endogenous nitrogen load. In both cases, postmortem examination revealed severe global cerebral edema and aspiration pneumonia. Enzyme assays confirmed the absence of AI activity in the livers of both patients. In contrast, AII activity (identified by its different cation cofactor requirements and lack of precipitation with anti-AI antibody) was markedly elevated in kidney tissues, 20-fold in M.O. and 34-fold in M.U. Terminal plasma arginine (1500μmol/1) and ammonia (1693 mmol/1) levels of M.U. were substantially higher than those of M.O. (348μmol/1 and 259μmol/1, respectively). By Northern blot analysis, AI mRNA was detected in M.O.'s liver but not in M.U.'s; similarly, anti-AI crossreacting material was observed by Western blot in M.O. only. These findings indicate that, despite their more longlived course, patients with arginase deficiency remain vulnerable to the same catastrophic events of hyperammonemia that patients with other urea cycle disorders typically suffer in infancy. Further, unlike those other disorders, an attempt is made to compensate for the primary enzyme deficiency by induction of another isozyme in a different tissue. Such substrate-stimulated induction of an enzyme may be unique in a medical genetics setting and raises novel options for eventual gene therapy of this disorder.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Functional and DNA binding analyses were used to investigate transcriptional regulation of liver arginase, a mammalian urea cycle enzyme with marked tissue specificity. Reporter constructs containing the proximal 111 bp of the gene from man andMacaca fascicularis showed over sixfold background activity in HepG2 hepatoma cells, which express significant levels of liver arginase, and 12-fold background activity in minimally expressing HEK cells. Longer constructs, active in both cell lines, showed greater activity in the liver cell line. The constructs showed no activity in arginase-negative NIH 3T3 fibroblasts. A 54-bp dyad insert present in the human sequence and absent inM. fascicularis did not affect function. DNA binding analyses localized multiple liver-specific complexes as well as complexes shared among cell types. Little binding was evident in fibroblast extracts. Despite liver-specific binding, there was no evidence of a strong liver-specific enhancer. HEK and NIH 3T3 nuclear extracts showed strikingly different patterns of DNA binding. These studies demonstrate that molecular regulation of liver arginase transcription is complex and that control mechanisms differ among tissue types.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract As a toxic metabolic byproduct in mammals, excess ammonia is converted into urea by a series of five enzymatic reactions in the liver that constitute the urea cycle. A portion of this cycle takes place in the mitochondria, while the remainder is cytosolic. Liver arginase (L-arginine ureahydrolase, AI) is the fifth enzyme of the cycle, catalyzing the hydrolysis of arginine to ornithine and urea within the cytosol. Patients deficient in this enzyme exhibit hyperargininemia with episodic hyperammonemia and long-term effects of mental retardation and spasticity. However, the hyperammonemic effects are not so catastrophic in arginase deficiency as compared to other urea cycle defects. Earlier studies have suggested that this is due to the mitigating effect of a second isozyme of arginase (AII) expressed predominantly in the kidney and localized within the mitochondria. In order to explore the curious dual evolution of these two isozymes, and the ways in which the intriguing aspects of AII physiology might be exploited for gene replacement therapy of AI deficiency, the cloned cDNA for human AI was inserted into an expression vector downstream from the mitochondrial targeting leader sequence for the mitochondrial enzyme ornithine transcarbamylase and transfected into a variety of recipient cell types. AI expression in the target cells was confirmed by northern blot analysis, and competition and immunoprecipitation studies showed successful translocation of the exogenous AI enzyme into the transfected cell mitochondria. Stability studies demonstrated that the translocated enzyme had a longer half-life than either native cytosolic AI or mitochondrial AII. Incubation of the transfected cells with increasing amounts of arginine produced enhanced levels of mitochondrial AI activity, a substrate-induced effect that we have previously seen with native AII but never AI. Along with exploring the basic biological questions of regulation and subcellular localization in this unique dual-enzyme system, these results suggest that the mitochondrial matrix space may be a preferred site for delivery of enzymes in gene replacement therapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract While routinely mapping point mutations within the arginase locus of a collection of hyperargininemic patients, we discovered that a base immediately outside a restriction endonuclease recognition site (TaqI) can eliminate cleavage of this site by this enzyme. The genetic lesion lay in a base immediately flanking a TaqI recognition site within exon 8 of the arginase locus and abolished cutting by approximately 80%. We wish to emphasize the necessity of heeding subtle cues frequently encountered while generating restriction enzyme data, because neither Southern blot maps nor endonuclease digestion of polymerase chain reaction amplified products of exon 8 accurately predicted where the point mutation lay. To our knowledge, this is the first instance of inhibition of cleavage by flanking bases occurring on natural (nonsynthetic) D DNA substrates, i.e., within the clinical setting of characterization of a human genetic disorder.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...