ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phosphorus  (10)
  • Somaclonal variation  (6)
  • Springer  (16)
Collection
Publisher
  • Springer  (16)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 80 (1990), S. 817-825 
    ISSN: 1432-2242
    Keywords: Lycopersicon esculentum ; Somaclonal variation ; Chemical mutagenesis ; Mutants ; Polyploidy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plants were regenerated from leaf, cotyledon, and hypocotyl explants of tomato cv Moneymaker. Various phenotypic alterations were observed among regenerated plants (R1), but were not transmitted to the progenies, except for ploidy variation. Variation in ploidy level, mainly tetraploidy, occurred in R1 plants and their R2 progenies, and the frequency of polyploid plants depended on the explant source. More than 50% of the regenerants derived from hypocotyl explants were found to be polyploid. A correlation was observed between the percentage of polyploid cells present in the explant material in vivo and the frequency of polyploid plants. Several monogenic mutations were recovered in the R2, four of which were shown to be allelic to known, recessive, single-gene mutants. No significant effect of explant source or duration of tissue culture period on mutant frequency or spectrum was found. For several mutant types that could be scored unambiguously, somaclonal variation was compared to variation induced by treatment of seeds with ethyl methane sulphonate (EMS). The results showed that the mutant frequencies were higher after EMS treatment than those generated through tissue culture. With respect to the mutant spectrum, no clear differences were observed between the spectra obtained after EMS treatment and those after tissue culture. However, tissue culture gave rise to polyploid plants, whereas no ploidy variants occurred after EMS treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: aluminium ; aluminium toxicity ; Leucaena yield ; lime ; phosphorus ; phosphorus uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of lime and P addition on the amounts of soil extractable P and Al, and on the growth of the tropical legume Leucaena leucocephala were investigated in a factorial experiment under controlled climate conditions using 4 (Koronivia, Nadroloulou, Batiri, and Seqaqa) highly-weathered, acid (pH initially 3.9 to 4.9) soils from Fiji. Resin-extractable P increased with lime addition and then decreased above pH 5.5, whereas M KCl-extractable Al decreased to undetectable levels at or above pH 5.2. Plant growth was usually adversely affected at low and high pH, even in the presence of added P. The pH (in M KCl) at which maximum growth occurred in the 4 soils varied from approximately 4.4 to 5.2; values somewhat lower than those reported in the literature. Changes in dry matter yield with increasing soil pH were strongly influenced by P status and a positive lime × P interaction was obtained with 3 of the 4 soils. Above pH 5.2, liming decreased the yield of both tops and roots, for reasons which are discussed in part II. The data obtained for extractable soil P and plant P concentrations indicate that P deficiency is a major problem on these soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: aluminium ; aluminium toxicity ; aluminium-induced P deficiency ; chemical composition ; Leucaena ; lime ; Lolium perenne L ; perennial ryegrass ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of lime and P on the chemical composition of the tropical legume Leucaena leucocephala were studied in a controlled climate laboratory experiment using 4 (Koronivia, Nadroloulou, Batiri, and Seqaqa) highly-weathered, acid soils from Fiji. For all soils, changes in the concentration of P in the Leucaena tops followed trends similar to the yield response curve, i.e., the concentration of P was highest at the soil pH at which maximum growth occurred. The concentration of Al in plant tops increased on either side of the pH of maximum growth, but Al uptake by the whole plant (tops plus roots) declined steadily with increasing pH. Although complete major (except P) and minor nutrients were added regularly, there was variation in the uptake of nutrients with pH. Poor growth at low pH values was attributed to an Al-induced P deficiency within the plant and at high pH to a soil P deficiency and, to a smaller extent, to the increased concentration of Al in the plant tops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation and drainage systems 9 (1995), S. 259-277 
    ISSN: 1573-0654
    Keywords: drainage ; controlled drainage ; DRAINMOD ; water table management ; model ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The design and management of drainage systems should consider impacts on drainage water quality and receiving streams, as well as on agricultural productivity. Two simulation models that are being developed to predict these impacts are briefly described. DRAINMOD-N uses hydrologic predictions by DRAINMOD, including daily soil water fluxes, in numerical solutions to the advective-dispersive-reactive (ADR) equation to describe movement and fate of NO3-N in shallow water table soils. DRAINMOD- CREAMS links DRAINMOD hydrology with submodels in CREAMS to predict effects of drainage treatment and controlled drainage losses of sediment and agricultural chemicals via surface runoff. The models were applied to analyze effects of drainage intensity on a Portsmouth sandy loam in eastern North Carolina. Depending on surface depressional storage, agricultural production objectives could be satisfied with drain spacings of 40 m or less. Predicted effects of drainage design and management on NO3-N losses were substantial. Increasing drain spacing from 20 m to 40 m reduced predicted NO3-N losses by over 45% for both good and poor surface drainage. Controlled drainage further decreases NO3-N losses. For example, predicted average annual NO3-N losses for a 30 m spacing were reduced 50% by controlled drainage. Splitting the application of nitrogen fertilizer, so that 100 kg/ha is applied at planting and 50 kg/ha is applied 37 days later, reduced average predicted NO3-N losses but by only 5 to 6%. This practice was more effective in years when heavy rainfall occurred directly after planting. In contrast to effects on NO3-N losses, reducing drainage intensity by increasing drain spacing or use of controlled drainage increased predicted losses of sediment and phosphorus (P). These losses were small for relatively flat conditions (0.2% slope), but may be large for even moderate slopes. For example, predicted sediment losses for a 2% slope exceeded 8000 kg/ha for a poorly drained condition (drain spacing of 100 m), but were reduced to 2100 kg/ha for a 20 m spacing. Agricultural production and water quality goals are sometimes in conflict. Our results indicate that simulation modeling can be used to examine the benefits of alternative designs and management strategies, from both production and environmental points-of-view. The utility of this methodology places additional emphasis on the need for field experiments to test the validity of the models over a range of soil, site and climatological conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: anthropogenic ; atmospheric deposition ; eutrophication ; fertilizer ; nitrogen ; nitrogen budget ; nitrogen fixation ; N:P ratio ; phosphorus ; pristine ; rivers ; temperate ; tropical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 66 (1983), S. 67-75 
    ISSN: 1432-2242
    Keywords: Cell culture ; Mesophyll protoplasts ; Somaclonal variation ; Mutagenesis ; Aurea mutant ; Tobacco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mesophyll protoplasts of Nicotiana tabacum, heterozygous for the sulfur locus (Su/su), were isolated and more than 2,200 calli were cultured. More than 8,000 regenerated shoots were analyzed for leaf colour. Cell culture regimes included media for normal and stressed growth conditions with both short and long culture periods. An additional treatment included N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis. An analysis of the regenerated shoots showed that an extended culture period led to an enhanced frequency of variant colony types, i.e. colonies producing both parental (Su/su) and non-parental (Su/Su or su/su) plants. NNG at 10 mg/l also enhanced the frequency of variant colony types. In some treatments there was also an increase in non-morphogenic colonies but this was independent of genetic changes at the sulfur locus. The frequency of dark green spots and twin spots, presumed to result from somatic crossing-over, was higher in the leaf cells of regenerated plants after both prolonged cell culture and chemical mutagenesis. Genetic analysis of the progeny of selfed regenerants revealed additional tissue culture induced variability with respect to segregation ratios of the different sulfur phenotypes. About two thirds of the lines tested segregated in accordance with a 1∶2∶1 Mendelian ratio. The remainder deviated from the expected segregation pattern and some lines also showed heterogeneity between progeny families derived from different seed capsules of the same plant. These results demonstrate that genetic changes affecting a specific locus and segregation patterns in progeny of regenerated plants are induced during cell culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...