ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lacertilia  (6)
  • chemical senses  (3)
  • Springer  (9)
  • 1
    ISSN: 1423-0445
    Keywords: strike-induced chemosensory searching ; foraging ; tongue-flicking ; Lacertilia ; Cordylidae ; Cordylus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Strike-induced chemosensory searching (SICS) was not detected experimentally in the cordylid lizard,Cordylus cordylus. Both components of SICS, a post-strike elevation in tongue-flick rate (PETF) and searching movements for attacked and released prey, were absent. The findings are consistent with previous data showing that PETF and/or SICS are lacking in all lizard families yet studied that forage primarily by ambush, but are present in actively foraging scleroglossan families and the herbivorous iguanian family Iguanidae. It is suggested that foraging behavior is a primary determinant of the presence or absence of SICS in lizards. Nevertheless, in most families in the two major clades, Iguania and Scleroglossa, the plesiomorphic foraging mode is retained. The findings agree with the prediction that SICS is absent in families lacking lingually mediated prey chemical discrimination (PCD), presumably due to selection against movement by ambush foragers that avoid being detected by either prey or predators because they remain motionless. Although PETF and SICS were absent, labial-licking and lingual movements similar to those observed after swallowing increased after biting prey, suggesting that the functions of these lingual movements may have been related to grooming. Locomotory movements did not increase following biting and appeared to represent avoidance of the experimenter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Chemoecology 4 (1993), S. 79-85 
    ISSN: 1423-0445
    Keywords: strike-induced chemosensory searching ; search behavior ; foraging ; feeding behavior ; tongue-flicking ; Reptilia ; Lacertilia ; Teiidae ; Tupinambis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Strike-induced chemosensory searching (SICS) is experimentally demonstrated in a teiid lizard,Tupinambis nigropunctatus. SICS consists of a concurrent post-strike elevation in tongue-flick rate (PETF) and searching movements after voluntary release or escape of bitten prey or removal of prey from the predator's mouth. The results are consistent with previous data showing that PETF and/or SICS occur in all families of scleroglossan lizards and snakes and all families of actively foraging lizards yet studied. The relatively short duration of SICS (2 min) in a lizard having lingual and vomeronasal structure highly specialized for chemosensory sampling and analysis suggests that phylogenetic and ecological factors may be more important than morphology in determining the duration. The greatest known durations occur only in the presumably monophyletic clade containing varanoid lizards and snakes, all of which have highly developed chemical sampling and chemoreceptor apparatus, but in addition feed on prey that has a high probability of being relocated by prolonged scent-trailing. Because only active foragers move through the habitat while tongue-flicking and exhibit lingually mediated prey chemical discrimination, only active foragers may be expected to use SICS. SICS would appear to be useless to an ambush forager and might disrupt its defensive crypticity, rendering it more detectable to predators and prey. Therefore, it may be predicted that SICS is adaptively adjusted to foraging mode.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1423-0445
    Keywords: tongue-flicking ; labial-licking ; feeding ; foraging ; Lacertilia ; Eublepharidae ; Eublepharis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two forms of lingual protrusion, tongueflicking and labial-licking, were differentially affected by combinations of movement and eating conditions in a eublepharid gecko (Eublepharis macularius). Tongue-flicking, in which the tongue contacts substrates beyond the lizard's body, occurred at increased rates during locomotion and during locomotion was significantly more frequent after eating than in a baseline condition. Labial-licking, in which a protruded portion of the tongue touches the labial, mental or rostral scales that surround the mouth, increased after eating. Unlike tongue-flick rates, by far the highest labial-lick rates were observed in stationary lizards after eating. The elevated tongue-flicking rates during movement after eating may be a manifestation of a postingestive chemosensory search for prey. In addition to grooming, several possible chemosensory functions of labial-licking are discussed, including gustatory sampling, sampling prey chemicals on the labials for transfer to the vomeronasal system, and redistribution of chemicals on the tongue to enhance transfer. It is suggested that labial-licking might help motionless lizards maintain vigilance for visual prey stimuli associated with the specific chemical prey cues. Another possible explanation for the increased labial-lick rate while motionless after eating is that prey chemicals induce tongue-flicking, but that the distance protruded is lessened and the tongue does not contact environmental substrates. Tongue-flicking while stationary is unlikely to lead to detection of additional prey and might incur detection by the lizard's predators or prey.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 24 (1998), S. 841-866 
    ISSN: 1573-1561
    Keywords: Tongue-flicking ; behavior ; chemical senses ; Squamata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The ability of squamates to detect chemical cues from adaptively important sources including prey, predators, and conspecifics has been tested frequently by presenting stimuli on cotton-tipped swabs or ceramic tiles. In many such studies the primary response variable is tongue-flicking, which is widely interpreted to indicate sampling for vomerolfaction. I review the basic experimental method and consider limitations regarding its application and interpretation and ways to overcome them. Effects of experimenter proximity and the assumed invisibility of chemical stimuli are considered, as are use of cologne as a pungency control, senses used in making chemical discriminations, and interpretation of results when there are no significant response differences among stimulus classes. Although the assumption that tongue-flicking reveals vomerolfactory sampling and the necessity of an intact vomeronasal system for normal responses to pheromones have been demonstrated where tested, very few species have been examined. In some squamates for which these assumptions have not been examined experimentally, especially eublepharid geckos, attacks on swabs bearing prey chemicals and performance of antipredatory displays in response to predator chemicals occur with no prior tongue-flicking. Not only are assays based on tongue-flicking useless in such cases, but the discriminations are likely based on olfaction. Issues specific to the study of responses to prey chemicals, predator chemicals, and pheromones are discussed. For many purposes, swab tests provide rapid, conclusive assays of ability to respond differentially to biologically relevant stimuli. However, other methods may be superior for studying some responses, and swab tests are not always applicable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-1561
    Keywords: Behavior ; chemical senses ; tongue-flicking ; diet ; Squamata ; Scincidae ; Scincella lateralis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Responses by the insectivorous, actively foraging scincid lizard, Scincella lateralis, to chemical cues from a plant food favored by herbivorous lizards, its ability to discriminate prey chemicals from control substances, and its relative response to internal and surface prey chemicals were studied experimentally. We presented chemical cues to the lizards on cotton swabs and recorded their tongue-flicks and biting attacks on the swabs. The lizards exhibited significantly greater tongue-flick rates and biting frequencies to prey surface cues than to plant surface chemicals from romaine lettuce, diluted cologne (pungency control), and deionized water. Responses to the plant stimuli did not differ from those to the two control stimuli, in contrast with strong responses to the same plant cues by herbivores. This finding provides the first information suggesting that chemosensory response may be adapted to diet, with responsiveness to plant stimuli evolving de novo in herbivores. Biting and tongue-flicking responses were significantly greater to cricket chemicals than to all other stimuli, among which there were no differences. Thus, the lizards are capable of prey chemical discrimination, which may be ubiquitous among actively foraging lizards. The lizards exhibited more frequent biting and higher tongue-flick rates to internal than surface prey chemicals. Although different methods of stimulus preparation are appropriate for different purposes, we conclude that prey surface chemicals available to foraging lizards are most desirable for studies bearing on location and identification of prey.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 15 (1989), S. 1311-1320 
    ISSN: 1573-1561
    Keywords: Lacertilia ; Varanus exanthematicus ; Varanidae ; prey odor ; tongue-flicking ; chemosensory searching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Strike-induced chemosensory searching (SICS), previously known only in snakes, is experimentally demonstrated in a lizard,Varanus exanthematicus. Tongue-flicking rate was significantly greater after striking the prey than following three control conditions. The occurrence of SICS in a varanid lizard suggests that SICS may serve to help relocate dropped or escaped prey not only in snakes, but in other squamates that use the tongue as a chemosensory sampling device during foraging. This in turn suggests the need for further studies of the taxonomic distribution of SICS in squamates and of its relationship to tongue use during foraging and feeding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 19 (1993), S. 2329-2336 
    ISSN: 1573-1561
    Keywords: Tongue-flicking ; foraging ; Lacertilia ; Iguanidae ; Dipsosaurus dorsalis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The herbivorous iguanid lizardDipsosaurus dorsalis exhibited PETF (postbite elevation in tongue-flicking rate), an increase in tongue-flicking rate after experimental removal from the mouth of food that had been bitten. This was demonstrated by a significantly higher tongue-flick rate after having bitten food than in three experimental conditions controlling for responses to the experimental setting, sight of food, and mechanical disturbance caused by the experimental removal of food from a lizard's mouth. As in most other families of lizards, PETF was brief, occurring only during the first minute. Lizards are divided into two major suprafamilial taxa, Iguania and Scleroglossa, consisting of carnivorous species characterized by two major foraging modes, ambush and active, and of herbivores and omnivores. PETF is absent in the two families of carnivorous iguanian lizards studied that are ambush foragers but present in three families of scleroglossan lizards that are active foragers. However, PETF is absent in the two species studied in a scleroglossan family, Gekkonidae, which forages by ambush, and present in an iguanian herbivore, as reported herein. We propose that the presence or absence of PETF, in addition to its phylogenetic determinants, is adaptively adjusted to foraging mode.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-1561
    Keywords: Vomeronasal system ; vomerolfaction ; feeding ; food vomodor ; Reptilia ; Lacertilia ; Iguanidae ; Dipsosaurus dorsalis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In the iguanid lizardDipsosaurus dorsalis, chemical food stimuli were discriminated from other odorants by vomerolfaction. This was demonstrated in a 2 × 3 experiment in which groups of lizards with sealed vomeronasal ducts or sham-sealed vomeronasal ducts responded to carrot chemical stimuli, cologne, and distilled water presented on cotton-tipped applicators. Abilities to detect and discriminate food chemicals were abolished in lizards having sealed vomeronasal ducts. For tongue-flick attack score and number of lizards biting, the sham-sealed group responded more strongly to carrot stimuli than to the control stimuli, but the group having sealed ducts did not. Lizards having sham-sealed ducts responded more strongly to carrot stimuli than did lizards having sealed ducts; responses by the two groups of lizards to control stimuli did not differ. Tongue-flicking occurred when the vomeronasal system detected a chemical stimulus from either carrot or cologne. Biting occurred only when the vomeronasal organ detected food stimuli (from carrot). Most duct-sealed lizards opened their mouths, some repeatedly. Mouth-opening thus occurs when the vomeronasal organ does not detect chemicals. It may be an attempt to stimulate or prime the vomeronasal organ or to dislodge the sealant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-1561
    Keywords: Behavior ; chemical senses ; tongue-flicking ; diet ; Squamata ; Lacertidae ; Teiidae ; Takydromus sexlineatus ; Cnemidophorus gularis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Sampling environmental chemicals to reveal prey and predators and to provide information about conspecifics is highly developed in lizards. Actively foraging lizards can discriminate between prey chemicals and control stimuli, but ambush foragers do not exhibit prey chemical discrimination. Recent experiments on a few species of herbivorous lizards have also demonstrated an ability to identify plant food chemicals. We studied chemosensory responses to chemicals from prey and palatable plants in two species of actively foraging, insectivorous lizards. Both the lacertid Takydromus sexlineatus and the teiid Cnemidophorus gularis exhibited strong responses to prey chemicals, but not to plant chemicals. These findings increase confidence in the relationship between prey chemical discrimination and foraging mode, which is based on data for very few species per family. They also provide data showing that actively foraging insectivores in two families do not respond strongly to plant cues. Such information is essential for eventual comparative studies of the relationship between plant diet and responses to food chemicals. The traditional method of presenting stimuli by using hand-held cotton swabs worked well for T. sexlineatus but could not be used for C. gularis due to repeated escape attempts. When stimuli were presented to C. gularis on ceramic tiles and no experimenter was visible, the lizards responded readily. Presentation of stimuli on tiles in the absence of a visible experimenter may be a valuable approach to study of food chemical discrimination by active foragers in which antipredatory behavior interferes with responses to swabs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...