ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 405 (1983), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of ethology 9 (1991), S. 9-23 
    ISSN: 1439-5444
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experimental tests show that the ball python (Python regius) has the ability to discriminate prey chemicals from control substances by tongue-flicking and exhibits a poststrike elevation in tongue-flicking rate (PETF). Prey chemical discrimination was revealed by significantly higher number of tongue-flicks and tongue-flick attack score in response to integumental chemicals from mice than to cologne or distilled water and by a higher frequency of biting in response to prey than control chemicals. PETF was indicated by higher tongue-flicking rates after biting than in several control conditions. Concurrent movements of the body suggest the operation of strike-induced chemosensory searching (SICS). Ecological factors affecting responses to prey chemicals, including defensive behaviors and characteristics of foraging behavior related to reliance on different sensory modalities, are discussed. The presence of PETF and SICS in a henophidian snake and in scleroglossan lizards suggests that these behaviors are plesiomorphic in snakes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1423-0445
    Keywords: prey odor ; behavior ; heritability ; Reptilia ; Squamata ; Serpentes ; Colubridae ; Masticophis flagellum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ingestively naive hatchling coachwhip snakes(Masticophis flagellum) detected integumentary chemicals from several potential prey species and discriminated them from chemical stimuli from other animals and from distilled water, strongly suggesting a genetic basis for these abilities. The strongest responses were to lizard and snake stimuli, which form a major part of the diet. Variable responses to chemical cues from other taxa are discussed. Responses by coachwhip snakes to prey chemicals appear to be highly specific, as suggested by the stronger reaction to vomodors of sympatric than of allopatric lizard species. The highly developed use of chemical cues by the diurnal, visually oriented coachwhip snake emphasizes the general importance of chemical senses to predation by nonvenomous snakes, regardless of the involvement of vision.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Chemoecology 4 (1993), S. 79-85 
    ISSN: 1423-0445
    Keywords: strike-induced chemosensory searching ; search behavior ; foraging ; feeding behavior ; tongue-flicking ; Reptilia ; Lacertilia ; Teiidae ; Tupinambis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Strike-induced chemosensory searching (SICS) is experimentally demonstrated in a teiid lizard,Tupinambis nigropunctatus. SICS consists of a concurrent post-strike elevation in tongue-flick rate (PETF) and searching movements after voluntary release or escape of bitten prey or removal of prey from the predator's mouth. The results are consistent with previous data showing that PETF and/or SICS occur in all families of scleroglossan lizards and snakes and all families of actively foraging lizards yet studied. The relatively short duration of SICS (2 min) in a lizard having lingual and vomeronasal structure highly specialized for chemosensory sampling and analysis suggests that phylogenetic and ecological factors may be more important than morphology in determining the duration. The greatest known durations occur only in the presumably monophyletic clade containing varanoid lizards and snakes, all of which have highly developed chemical sampling and chemoreceptor apparatus, but in addition feed on prey that has a high probability of being relocated by prolonged scent-trailing. Because only active foragers move through the habitat while tongue-flicking and exhibit lingually mediated prey chemical discrimination, only active foragers may be expected to use SICS. SICS would appear to be useless to an ambush forager and might disrupt its defensive crypticity, rendering it more detectable to predators and prey. Therefore, it may be predicted that SICS is adaptively adjusted to foraging mode.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1423-0445
    Keywords: Prey chemicals ; tongue-flicking ; PETF ; SICS ; insectivorous ; Reptilia Lacertilia ; Iguania ; Tropiduridae ; Liolaemus zapallarensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Experimental tests were conducted to determine whether the ambush foraging iguanian lizard,Liolaemus zapallarensis, was capable of discriminating prey chemicals from control substances and whether this lizard exhibits strike-induced chemosensory searching (SICS) or its components after biting prey. The two components of SICS are a poststrike elevation in tongue-flicking rate (PETF) and apparent searching movements for relocation of prey that has been bitten, but released or escaped.Liolaemus zapallarensis failed to discriminate prey chemicals from control substances, but exhibited significant PETF lasting one minute. SICS was absent inL. zapallarensis because no post-strike movements were observed. The absence of both prey chemical discrimination and SICS exhibited byL. zapallarensis is common to all the insectivorous iguanians and ambush foraging lizards studied to date. However,L. zapallarensis is the first insectivorous iguanian species shown to exhibit PETF. The results suggest thatL. zapallarensis does not use the tongue for detection, identification, or relocation of prey while foraging. The possibility does remain thatL. zapallarensis may be capable of chemically identifying prey once the prey stimuli reach the oral cavity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1423-0445
    Keywords: strike-induced chemosensory searching ; foraging ; tongue-flicking ; Lacertilia ; Cordylidae ; Cordylus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Strike-induced chemosensory searching (SICS) was not detected experimentally in the cordylid lizard,Cordylus cordylus. Both components of SICS, a post-strike elevation in tongue-flick rate (PETF) and searching movements for attacked and released prey, were absent. The findings are consistent with previous data showing that PETF and/or SICS are lacking in all lizard families yet studied that forage primarily by ambush, but are present in actively foraging scleroglossan families and the herbivorous iguanian family Iguanidae. It is suggested that foraging behavior is a primary determinant of the presence or absence of SICS in lizards. Nevertheless, in most families in the two major clades, Iguania and Scleroglossa, the plesiomorphic foraging mode is retained. The findings agree with the prediction that SICS is absent in families lacking lingually mediated prey chemical discrimination (PCD), presumably due to selection against movement by ambush foragers that avoid being detected by either prey or predators because they remain motionless. Although PETF and SICS were absent, labial-licking and lingual movements similar to those observed after swallowing increased after biting prey, suggesting that the functions of these lingual movements may have been related to grooming. Locomotory movements did not increase following biting and appeared to represent avoidance of the experimenter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1423-0445
    Keywords: tongue-flicking ; labial-licking ; feeding ; foraging ; Lacertilia ; Eublepharidae ; Eublepharis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two forms of lingual protrusion, tongueflicking and labial-licking, were differentially affected by combinations of movement and eating conditions in a eublepharid gecko (Eublepharis macularius). Tongue-flicking, in which the tongue contacts substrates beyond the lizard's body, occurred at increased rates during locomotion and during locomotion was significantly more frequent after eating than in a baseline condition. Labial-licking, in which a protruded portion of the tongue touches the labial, mental or rostral scales that surround the mouth, increased after eating. Unlike tongue-flick rates, by far the highest labial-lick rates were observed in stationary lizards after eating. The elevated tongue-flicking rates during movement after eating may be a manifestation of a postingestive chemosensory search for prey. In addition to grooming, several possible chemosensory functions of labial-licking are discussed, including gustatory sampling, sampling prey chemicals on the labials for transfer to the vomeronasal system, and redistribution of chemicals on the tongue to enhance transfer. It is suggested that labial-licking might help motionless lizards maintain vigilance for visual prey stimuli associated with the specific chemical prey cues. Another possible explanation for the increased labial-lick rate while motionless after eating is that prey chemicals induce tongue-flicking, but that the distance protruded is lessened and the tongue does not contact environmental substrates. Tongue-flicking while stationary is unlikely to lead to detection of additional prey and might incur detection by the lizard's predators or prey.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 341 (1989), S. 276-276 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR-Distinguishing academic from sports boycotts of South Africa ("Academics, cricket and apartheid" Nature 340, 413; 1989) does seem appropriate in the light of the vital need for Great Britain and other nations steadfastly to support the academic institutions in South Africa that will be so ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 252 (1974), S. 121-123 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Subjects were instructed to utter a given consonant + vowel syllable immediately after listening to repetitions of a selected adapting syllable. The utterances were analysed to determine whether a feature of the waveforms systematically varied as a function of perceptual adaptation. We concentrated ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-1561
    Keywords: Vomeronasal system ; vomerolfaction ; feeding ; food vomodor ; Reptilia ; Lacertilia ; Iguanidae ; Dipsosaurus dorsalis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In the iguanid lizardDipsosaurus dorsalis, chemical food stimuli were discriminated from other odorants by vomerolfaction. This was demonstrated in a 2 × 3 experiment in which groups of lizards with sealed vomeronasal ducts or sham-sealed vomeronasal ducts responded to carrot chemical stimuli, cologne, and distilled water presented on cotton-tipped applicators. Abilities to detect and discriminate food chemicals were abolished in lizards having sealed vomeronasal ducts. For tongue-flick attack score and number of lizards biting, the sham-sealed group responded more strongly to carrot stimuli than to the control stimuli, but the group having sealed ducts did not. Lizards having sham-sealed ducts responded more strongly to carrot stimuli than did lizards having sealed ducts; responses by the two groups of lizards to control stimuli did not differ. Tongue-flicking occurred when the vomeronasal system detected a chemical stimulus from either carrot or cologne. Biting occurred only when the vomeronasal organ detected food stimuli (from carrot). Most duct-sealed lizards opened their mouths, some repeatedly. Mouth-opening thus occurs when the vomeronasal organ does not detect chemicals. It may be an attempt to stimulate or prime the vomeronasal organ or to dislodge the sealant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...