ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 71 (1997), S. 95-107 
    ISSN: 1572-9699
    Keywords: sulfur bacteria ; sulfur oxidation pathways ; thiobacilli ; thiosulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The history of the elucidation of the microbiology and biochemistry of the oxidation of inorganic sulfur compounds in chemolithotrophic bacteria is briefly reviewed, and the contribution of Martinus Beijerinck to the study of sulfur-oxidizing bacteria highlighted. Recent developments in the biochemistry, enzymology and molecular biology of sulfur oxidation in obligately and facultatively lithotrophic bacteria are summarized, and the existence of at least two major pathways of thiosulfate (sulfur and sulfide) oxidation confirmed. These are identified as the ‘Paracoccus sulfur oxidation’ (or PSO) pathway and the ‘S4intermediate’ (or S4I) pathway respectively. The former occurs in organisms such as Paracoccus (Thiobacillus) versutus and P. denitrificans, and possibly in Thiobacillus novellus and Xanthobacter spp. The latter pathway is characteristic of the obligate chemolithotrophs (e.g. Thiobacillus tepidarius, T. neapolitanus, T. ferrooxidans, T. thiooxidans) and facultative species such as T. acidophilus and T. aquaesulis, all of which can produce or oxidize tetrathionate when grown on thiosulfate. The central problem, as yet incompletely resolved in all cases, is the enzymology of the conversion of sulfane-sulfur (as in the outer [S-] atom of thiosulfate [-S-SO3-]), or sulfur itself, to sulfate, and whether sulfite is involved as a free intermediate in this process in all, or only some, cases. The study of inorganic sulfur compound oxidation for energetic purposes in bacteria (i.e. chemolithotrophy and sulfur photolithotrophy) poses challenges for comparative biochemistry. It also provides evidence of convergent evolution among diverse bacterial groups to achieve the end of energy-yielding sulfur compound oxidation (to drive autotrophic growth on carbon dioxide) but using a variety of enzymological systems, which share some common features. Some new data are presented on the oxidation of 35S-thiosulfate, and on the effect of other anions (selenate, molybdate, tu ngstate, chromate, vanadate) on sulfur compound oxidation, including observations which relate to the roles of polythionates and elemental sulfur as intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 113 (1977), S. 257-264 
    ISSN: 1432-072X
    Keywords: Thiobacillus A2 ; Facultative heterotrophy ; Diauxic growth ; Sugar metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thiobacillus A2 grew on a number of organic acids, pentoses, hexoses and α-linked disaccharides, but not on β-linked disaccharides or galactosides. Growth was slow on glucose, although fast-growing strains were selectively isolated. Additive growth rates occurred on glucose and galactose; growth on glucose with fructose, pyruvate or gluconate was biphasic rather than diauxic; fructose was used preferentially over glucose; slow growth on glucose was accelerated by some disaccharides; growth on acetate, fumarate or succinate with glucose gave diauxic growth with preferential use of the acid and repression of glucose incorporation. Acetate and succinate tended to be used preferentially even with cultures grown on them in mixture with fructose or sucrose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 122 (1979), S. 307-312 
    ISSN: 1432-072X
    Keywords: Thiobacillus A2 ; Radiorespirometry ; Chemostat culture ; Glucose metabolism ; Multiple metabolic pathways ; Metabolic regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thiobacillus A2 was grown in glucose- or ammonium-limited chemostats and relative contributions of the Embden-Meyerhof (EM), Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to glucose catabolism estimated by 14C-glucose radiorespirometry. In fast growing strain GFI, the EM pathway predominated (41–79%) under all growth conditions with the PP pathway contributing 18–30%. The ED pathway was apparently absent under some conditions of glucose limitation. In contrast, wild type Thiobacillus A2 exhibited predominance of the EM pathway (43–48%) under ammonium-limitation but apparent predominance of the PP pathway (43–55%) under glucose-limitation, although all three pathways were calculated to operate. Under some conditions of glucose limitation the EM pathway was possibly considerably depressed. No clear pattern of response of the three pathways to altered environmental conditions could be deduced, although marked change in pathway activities were obviously induced. Growth yield was apparently unaffected by variation in pathways. The problems of interpreting such complex radiorespirometric data are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 163 (1995), S. 131-137 
    ISSN: 1432-072X
    Keywords: Carbon disulfide ; Carbonyl sulfide ; Thiophenes ; Thiobacillus ; Organic sulfur ; Inorganic sulfur ; Quercus ; Oak ; Autotrophy ; Methylotrophy ; Chemostat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four eubacterial strains able to grow on carbon disulfide (CS2) as sole energy substrate were isolated from soil and leaves of the CS2-producing tree Quercus lobata. Three of the isolates (strains KS1, KS2, and KL1) were gram-negative, facultatively methylotrophic, and heterotrophic, and capable of growth on a wide range of inorganic and organic sulfur compounds. Biochemical and physiological properties differed slightly among the three strains, but all are proposed to be novel thiobacillus species. Growth yields on CS2 in batch and chemostat culture ranged from 3.3 g dry wt/mol CS2 (batch) to a maximum growth yield (Ymax) of 11.1 g dry wt/mol (chemostat). Chemostat data for two of the strains growing, autotrophically on thiosulfate gave Ymax values of 7.4 and 7.1 g dry wt/mol, which fall within the range observed with thiobacilli. The three new Thiobacillus strains had DNA containing 39.8 (KS2), 47.8 (KS1), and 50.5 (KL1) mol% G+C. All three were unusual in being able to grow not only on thiosulfate (aerobically or with denitrification), but also on CS2, carbonyl sulfide and methylated sulfides as sole energy substrates, and one was unique in being able to grow also on substituted thiophenes. They are the first organisms described to be capable, of anaerobic growth with denitrification on CS2. The fourth isolate (strain KL2) was gram-positive non-motile and nonspore-forming, with 39.0 mol% G+C. It had a restricted range of sulfur-containing growth substrates, could not grow methylotrophically or on autotrophic substrates other than CS2, and is not yet classifiable These organisms extend the range of eubacteria known to be capable of CS2 breakdown and demonstrate that several types of facultatively chemolithotrophic bacteria, able to grow exclusively on CS2, are associated with a CS2-producing plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Thiobacillus halophilus ; Obligate chemolithoautotroph ; Obligately halophilic ; Ubiquinone Q8 ; Chemostat growth yields
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation of a novel obligately chemolithotrophic, halophilic and extremely halotolerant Thiobacillus from a hypersaline lake is described. Attempts to demonstrate sulphur- and ferrous iron-oxidizing chemolithotrophs in neighbouring hypersaline lakes were unsuccessful. The organism isolated differs from any other Thiobacillus species previously described and is formally named as Thiobacillus halophilus. It possesses ribulose bisphosphate carboxylase and grows chemolithoautotrophically on thiosulphate, tetrathionate and sulphur, oxidising them to sulphate. Kinetic constants for oxidation of sulphide, thiosulphate, trithionate and tetrathionate are presented. The organism is obligately halophilic, growing best with 0.8–1.0 M NaCl, and tolerating up to 4 M NaCl. Optimum growth was obtained at about 30° C and pH 7.0–7.3. It contains ubiquinone Q-8 and its DNA contains 45 mol % G+C. Organisms of this type might contribute significantly to the autotrophic fixation of carbon dioxide in some hypersaline extreme environments of the kind described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Thiobacillus thyasiris ; Bivalve symbiont ; Ribulose 1,5-bisphosphate carboxylase/oxygenase ; Polyhedral bodies ; Carboxysomes ; Protein composition ; Facultative chemolithoautotroph
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 160 (1993), S. 152-157 
    ISSN: 1432-072X
    Keywords: Thiothrix ramosa ; Chemolithoautotrophy ; Chemostat ; Ribulose bisphosphate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thiothrix has been shown for the first time to be able to grow chemolithoautotrophically with thiosulphate or carbon disulphide as sole energy substrate. Thiosulphate served as the growth-limiting substrate for Thiothrix ramosa in chemostat culture. Maximum growth yield (Ymax) from yields at growth rates between 0.029–0.075 h-1 was 4.0 g protein/mol thiosulphate oxidized. The key enzyme of the Calvin cycle, ribulose 1,5-bisphosphate carboxylase, was present in these cells, as were rhodanese, adenylyl sulphate (APS) reductase and ‘sulphur-oxidizing enzyme’. Thiosulphate-grown cells oxidized thiosulphate, sulphide, tetrathionate and carbon disulphide. Oxidation kinetics for sulphide, thiosulphate and tetrathionate were biphasic: oxygen consumption during the fast first phase of oxidation indicated oxidation of sulphide, and the sulphane moieties of thiosulphate and tetrathionate, to elemental sulphur, before further oxidation to sulphate. Kinetic constants for these four substrates were determined. T. ramosa also grew mixotrophically in batch culture on lactate with a number of organic sulphur compounds: carbon disulphide, methanethiol and diethyl sulphide. Substituted thiophenes were also used as sole substrates. The metabolic versatility of T. ramosa is thus much greater than previously realised.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1980), S. 91-97 
    ISSN: 1432-072X
    Keywords: Thiobacillus A2 ; Chemostat culture ; Glucose oxidation ; Succinate metabolism ; Dual substrate limitation ; Metabolic regulation ; Radiorespirometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In contrast to its diauxic behaviour in batch culture, Thiobacillus A2 grew in chemostat culture using glucose and succinate as dual limiting substrates. Biomass production under dual limitations was the sum of that on single substrates with each substrate being oxidized and assimilated to similar extents in single and dual substrate-limited cultures. In glucose and glucose + succinate-limited cultures glucose was oxidized largely by the Entner-Doudoroff and pentose phosphate pathways, but other mechanisms also contributed and the ratios of pathways depended on substrate ratios and the previous substrate-history of the culture. Variations in specific activities of enzymes of carbohydrate metabolism following switches from single to mixed substrates were considerable, ranging from fourfold for fructose diphosphate aldolase to more than 200-fold for hexokinase, fructose diphosphatase, glucose 6-phosphate and 6-phosphogluconate dehydrogenases. Changes in specific activities occurred only over prolonged time periods in the chemostat, probably reflecting low concentrations of free substrates in carbon-limited cultures and consequent low levels of catabolite repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Thiobacillus aquaesulis ; Moderate thermophile ; Facultative chemolithoautotroph ; Chemostat growth yields ; Dentrification ; Ubiquinone Q-8
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A moderately thermophilic, facultatively chemolithoautotrophic thiobacillus isolated from a thermal sulphur spring is described. It differs from all other species currently known to be in culture. It grows lithoautotrophically on thiosulphate, trithionate or tetrathionate, which are oxidized to sulphate. Batch cultures on thiosulphate do not produce tetrathionate, but do precipitate elemental sulphur during growth. In autotrophic chemostat cultures the organism produces yields on thiosulphate, trithionate and tetrathionate that are among the highest observed for a Thiobacillus. Autotrophic cultures contain ribulose bisphosphate carboxylase. Heterotrophic growth has been observed only on complex media such as yeast extract and nutrient broth. It is capable of autotrophic growth and denitrification under anaerobic conditions with thiosulphate and nitrate. It grows between 30 to 55° C, and pH 7 to 9, with best growth at about 43°C and pH 7.6. It contains ubiquinone Q-8, and its DNA contains 65.7 mol% G+C. The organism is formally described and named as Thiobacillus aquaesulis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Thiobacillus thyasiris DSM5322 ; Thiomicrospira thyasirae ; Pleomorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The halotolerant, facultatively chemolithoautotrophic, gramnegative sulphur-oxidizing organism isolated from the gills of Thyasira flexuosa is shown to exhibit pleomorphism consistent with its being a member of the genus Thiomicrospira and not a Thiobacillus as originally classified. Its distinctive morphology, DNA base composition, and similarity of 16S rRNA sequences to that of Thiomicrospira sp. strain L-12 (which differs only in detail from the type species Thiomicrospira pelophila), lead us to reclassify this strain as Thiomicrospira thyasirae DSM5322.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...