ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion  (5)
  • 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
  • Astronomy
  • E31
  • E52
  • J24
  • Seismological Society of America  (4)
  • SSA  (1)
Collection
Years
  • 1
    Publication Date: 2020-11-30
    Description: Taking advantage of a large displacement-release experiment on a twostory reinforced concrete building located in Bagnoli (Naples, Italy), we performed free-field measurements using 3D seismometers, accelerometers, and a 100-m-long vertical array. The ground motion was noticeable: near the building, the acceleration exceeded 5% g. At each measurement point, it was possible to recognize two source terms, due to the tested building and to the reaction structure. The two sources generated different wave trains. High-frequency accelerations propagated as Rayleigh waves, whereas 1–2 Hz waves carrying most of the displacement propagated only as body waves. The experiment lends further support to the hypothesis that buildings are able to modify substantially the free-field ground motion in their proximity: the peak ground acceleration we observed is the 20% of the ground acceleration required to produce a displacement on the building equal to the one imposed during the release test. We recognize, however, the difficulty of a realistic modeling of wave propagation in the topmost layer of a densely urbanized area.
    Description: Published
    Description: 2457–2464
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Seismic Source ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: On 6 April 2009, 01:32:40 UTC, an Mw 6.3 earthquake occurred in the Abruzzo region (central Italy), close to L’Aquila, a town of 68,500 inhabitants. About 300 people died because of the collapse of many residential and public build¬ings, and damage was widespread in L’Aquila and its neighbor¬ing municipalities. The earthquake occurred at 9.5 km depth along a NW-SW normal fault with SW dip, located below the city of L’Aquila (Istituto Nazionale di Geofisica e Vulcanologia [INGV] 2009a). The maximum observed intensity is IX–X in the MCS scale and the most relevant damages are distributed in the NW-SE direc¬tion, with evident predominance toward the southeast (Istituto Nazionale di Geofisica e Vulcanologia 2009b). This event rep¬resents the third largest earthquake recorded by strong-motion instruments in Italy, after the 1980 Mw 6.9 Irpinia and the 1976 Mw 6.4 Friuli earthquakes (Luzi et al. 2008). The mainshock was followed by seven aftershocks of moment magnitude larger than or equal to 5, the two stron¬gest of which occurred on April 7 (Mw = 5.6) and April 9 (Mw = 5.4). The mainshock and its aftershocks have been recorded by several digital stations of the Italian strong-motion network (Rete Accelerometrica Nazionale, R AN), operated by the Italian Department of Civil Protection (DPC); by the Italian seismometric network (Rete Sismometrica Nazionale, operated by INGV-Centro Nazionale Terremoti (CNT); http://cnt. rm.ingv.it); and by a temporary strong-motion array installed by the INGV Sezione di Milano-Pavia (MI-PV; http://www. mi.ingv.it). A total of 56 three-component strong-motion record¬ings were obtained within 280 km for the mainshock, with 23 being within 100 km of the epicenter. Horizontal peak ground motions in the near-fault region range from 327 to 646 cm/sec2, the latter representing one of the highest values recorded in Italy. This strong-motion data set, consisting of 954 waveforms from Mw 〉 4.0 events, is unique in Italy because it is entirely digital and includes observations from near-fault dis¬tances to some hundred kilometers away. The data set has been integrated in the new Italian strong-motion database ITACA (ITalian ACcelerometric Archive), available at http://itaca. mi.ingv.it. This paper provides an overview of the strong-motion recordings of the mainshock and the two strongest aftershocks with preliminary analyses of different strong-motion param¬eters as a function of distance, azimuth, and site conditions.
    Description: Published
    Description: 951-966
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: L'Aquila ; strong-motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Abstract We critically analyze the results on seismic intensity attenuation in Italy derived by Albarello and D’Amico (2004) and Gasperini (2001).We demonstrate that, due to the inadequacy of certain underlying assumptions, the empirical relationships determined in those studies did not best reproduce the decay of intensity as the distance from the source increases. We reconsidered some of the relevant concepts and assumptions used in these intensity-attenuation studies (macroseismic epicenter, epicentral intensity, data completeness) to suggest some useful recipes for obtaining unbiased estimates. In particular, we suggest that (1) data for distances from the source at which an intensity below the limit of diffuse perceptibility (≤IV) is expected should be excluded from attenuation computations because such data are clearly incomplete, (2) attenuation equations that include a term proportional to the epicentral intensity I0 with a coefficient different from 1.0 must not be used because they imply a variable offset between I0 and the intensity expected at the epicenter, and (3) epicentral intensities must be recomputed consistently with the attenuation equation because those reported by the Italian catalog do not generally correspond with the intensity predicted at the epicenter by the attenuation relationships so far proposed. Following these suggestions produces a significant reduction in the standard deviation of the model that might lead to a corresponding reduction of the estimates of seismic hazard.
    Description: Published
    Description: 682-691
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity, Ground motion equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Abstract Several different attenuation models have recently been proposed for the Italian region to characterize the decay of macroseismic intensity with the distance from the source. The significant scatter between these relationships and some significant drawbacks that seem to characterize previous approaches (described in a companion article by Pasolini et al., 2008) suggest that the problem needs to be reconsidered. As a first step toward more detailed analyses in the future, this study aimed at developing an isotropic attenuation relationship for the Italian area. Because this attenuation relationship has to be used primarily in probabilistic seismic hazard assessment, major attention was given to evaluating the attenuation relationship in its complete probabilistic form. Another important aspect of this study was the preliminary evaluation of the intrinsic (i.e., independent of the specific attenuation relationship to be used) scattering of data, which represents the lowest threshold for the residual variance that cannot be explained by the attenuation relationship. Furthermore, the peculiar formal features of intensity data and relevant uncertainties were considered carefully. To reduce possible biases, the completeness of the available database was checked and a suitable data selection procedure was applied. Since epicentral intensity cannot be defined unambiguously from the experimental point of view, the attenuation relationship was scaled with a new variable that is more representative of the earthquake dimension. Several criteria were considered when evaluating competing attenuation formulas (explained variance, Bayesian information criteria, Akaike information criteria, etc.). Statistical uncertainty about empirical parameters was evaluated by using standard approaches and bootstrap simulations. The performance of the selected relationship with respect to a control sample was analyzed by using a distribution-free approach. The resulting equation for the expected intensity I at a site located at epicentral distance R is I IE 0:0086 0:0005 D h 1:037 0:027 ln D ln h ; where D R2 p h2, h 3:91 0:27 km, and IE is the average expected intensity at the epicenter for a given earthquake that can be computed from the intensity data (when available) or by using empirical relationships with the moment magnitude Mw or the epicentral intensity I0 reported by the Italian seismic catalog IE 5:862 0:301 2:460 0:055 Mw; IE 0:893 0:254 1:118 0:033 I0: Comparison of the model standard deviation (S.D.) (0.69 intensity degrees) with the intrinsic one (0.62) indicates that this attenuation equation is not far from being optimal.
    Description: Published
    Description: 692-708
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity, Ground motion prediction equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-09
    Description: In the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department) within the agreement 2007-2009, a tool for probabilistic seismic hazard assessment (PSHA) was developed. The main goal of the project was to provide a flexible computational tool for PSHA; the requirements considered essential for the success of the project included: •ability to handle both stationary and non-stationary earthquake time-occurrence models; •ability to use ground-motion prediction models that are not parametric equations but probabilistic "footprints" of the intensities generated by earthquakes of known magnitude and focal characteristics. Usually, these footprints are results of ground motion simulations. Some commonly used programs (e.g., FRISK, by McGuire, 1978; SEISRISK III, by Bender and Perkins, 1987) and more recent and state-of-the-art tools (e.g. OpenSHA, by Field et al., 2003, http://www.opensha.org; OpenQuake, http://openquake.org) for PSHA were analyzed. It was decided to focus on CRISIS2007, which was already a mature and well known application (e.g., Kalyan Kumar and Dodagoudar, 2011; Teraphan et al., 2011; D’Amico et al., 2012; see also http://ecapra.org/CRISIS-2007), but also suitable for additional development and evolution since its source code is freely available on request. The computational tool resulted in an extensive redesign and renovation of the previous CRISIS2007 version. CRISIS is a computer program for PSHA, originally developed in the late 1980's using Fortran as programming language (Ordaz, 1991). In this format, still without a graphical user interface (GUI), it was distributed as part of SEISAN tools (Ottemöller et al., 2011). Ten years later, a GUI was constructed, generating what was called CRISIS99 (Ordaz, 1999). In this version, all the graphic features were written in Visual Basic, but the computation engine remained a Fortran dynamic link library. The reason for the use of mixed-language programming was that computations in Visual Basic were extremely slow. Around 2007 the program was upgraded, in view of the advantages offered by the object-oriented technologies. An object-oriented programming language was required and the natural choice was Visual Basic.Net. In the new version (called CRISIS2007), both the GUI and the computation engine were written in the same language. Finally, in the frame of the mentioned S2 project, starting from 2008, the program was split into two logical layers: core (CRISIS Core Library) and presentation (CRISIS2008). In addition, a new presentation layer was developed for accessing the same functionalities via Web (CRISISWeb). It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 495-504
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Hazard ; Seismology ; Probabilistic Seismic Hazard Assesment ; PSHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...