ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • Oxford University Press  (16)
Collection
  • Articles  (16)
Keywords
Years
Topic
  • 1
    Publication Date: 2015-04-04
    Description: We analyze the cross-correlation function (CCF) of coda of earthquakes, which is used to retrieve the Green's function between two stations as well as the CCF of ambient noise. We select 74 Hi-net stations located in eastern Japan and 66 earthquakes to calculate the CCF. For each earthquake, we calculate the CCFs between possible pairs for the frequency bands of 0.1–0.2 Hz, 0.2–0.4 Hz and 0.4–0.8 Hz. Then we stack the CCFs for different earthquakes at each pair to obtain the average CCF. Although the correlation coefficients between the average and each CCFs are lower than 0.5 for most of the earthquakes, we obtain the propagating Rayleigh wave trace from average CCFs. We focus on the ratio of the amplitude in the positive lag time of the CCF to that in the negative lag time. CCFs for different earthquakes show different ratios which depend on the angle between the path of two stations and the epicentre. The amplitude in the lag time corresponding to the signal travelling from the near source station to the far source station is larger than that in the opposite lag time. Therefore the energy flux is not isotropic even in the coda and the energy from the source side is dominant. We average the ratios of pairs whose absolute values of angles are less than 45°. The average ratios are 0.5 at 0.1–0.2 Hz. For higher frequencies, the ratio is not clear because of the bad signal-to-noise ratio. According to the diffusion model, the ratio is predicted as 0.6. Therefore, the coda is represented as the diffusion state in 0.1–0.2 Hz with our observation setting.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-11
    Description: Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-09
    Description: In volcanic domains, magma transport and pressure build-up induce high stress–strain perturbations in the surrounding volcanic edifice that may lead to volcanic flank movements and possible instability. In this study, we focus on the 2007 March–April episode of volcanic activity at Piton de la Fournaise (PdF) Volcano, La Réunion Island. This episode was associated with a large volume of emitted lava (240 x 10 6 m 3 ) and a 340-m caldera collapse. We present observations of continuous seismic velocity changes measured using cross-correlations of ambient seismic noise over 10 yr at PdF. Overall, we observe a large velocity reduction starting a few days prior to the major 2007 April 2 eruption. Comparison of seismic velocity change measurements with observations of deformation from InSAR and GPS shows that the seismic velocity reduction coincided with a widespread flank movement starting at the time of injection of magma to feed an initial eruption, a few days before the 2007 April 2 eruption. We emphasize the potential of noise-based seismic velocity change measurements, together with geodetic observations, to detect and monitor possibly hazardous slope instabilities.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-17
    Description: Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ~15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ~0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-18
    Description: Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the subsurface. The standard monitoring approach relies on measuring traveltime changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor, for example, perturbs the reconstructed Green’s function. In this paper, we propose a general formulation for retrieving continuous time-series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function (CCF). Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise CCFs. We apply this approach to a complex data set of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Monitoring temporal changes of volcanic interiors is important to understand magma, fluid pressurization and transport leading to eruptions. Noise–based passive seismic monitoring using coda wave interferometry is a powerful tool to detect and monitor very slight changes in the mechanical properties of volcanic edifices. However, the complexity of coda waves limits our ability to properly image localized changes in seismic properties within volcanic edifices. In this work, we apply a novel passive ballistic wave seismic monitoring approach to examine the active Piton de la Fournaise volcano (La Réunion island). Using noise correlations between two distant dense seismic arrays, we find a 2.4 % velocity increase and -0.6 % velocity decrease of Rayleigh–waves at frequency bands of 0.5–1 Hz and 1–3 Hz, respectively. We also observe a -2.2 % velocity decrease of refracted P–waves at 550 m depth at the 6–12 Hz band. We interpret the polarity differences of seismic velocity changes at different frequency bands and for different wave types as being due to strain change complexity at depth associated with subtle pressurization of the shallow magma reservoir. Our results show that velocity changes measured using ballistic waves provide complementary information to interpret temporal changes of the seismic properties within volcanic edifices.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Monitoring temporal changes of volcanic interiors is important to understand magma, fluid pressurization and transport leading to eruptions. Noise-based passive seismic monitoring using coda wave interferometry is a powerful tool to detect and monitor very slight changes in the mechanical properties of volcanic edifices. However, the complexity of coda waves limits our ability to properly image localized changes in seismic properties within volcanic edifices. In this work, we apply a novel passive ballistic wave seismic monitoring approach to examine the active Piton de la Fournaise volcano (La Réunion island). Using noise correlations between two distant dense seismic arrays, we find a 2.4 per cent velocity increase and −0.6 per cent velocity decrease of Rayleigh waves at frequency bands of 0.5–1 and 1–3 Hz, respectively. We also observe a −2.2 per cent velocity decrease of refracted 〈span〉P〈/span〉 waves at 550 m depth at the 6–12 Hz band. We interpret the polarity differences of seismic velocity changes at different frequency bands and for different wave types as being due to strain change complexity at depth associated with subtle pressurization of the shallow magma reservoir. Our results show that velocity changes measured using ballistic waves provide complementary information to interpret temporal changes of the seismic properties within volcanic edifices.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-02-18
    Description: Unveiling the mechanisms of earthquake and volcanic eruption preparation requires improving our ability to monitor the rock mass response to transient stress perturbations at depth. The standard passive monitoring seismic interferometry technique based on coda waves is robust but recovering accurate and properly localized P- and S-wave velocity temporal anomalies at depth is intrinsically limited by the complexity of scattered, diffracted waves. In order to mitigate this limitation, we propose a complementary, novel, passive seismic monitoring approach based on detecting weak temporal changes of velocities of ballistic waves recovered from seismic noise correlations. This new technique requires dense arrays of seismic sensors in order to circumvent the bias linked to the intrinsic high sensitivity of ballistic waves recovered from noise correlations to changes in the noise source properties. In this work we use a dense network of 417 seismometers in the Groningen area of the Netherlands, one of Europe's largest gas fields. Over the course of 1 month our results show a 1.5 per cent apparent velocity increase of the P wave refracted at the basement of the 700-m-thick sedimentary cover. We interpret this unexpected high value of velocity increase for the refracted wave as being induced by a loading effect associated with rainfall activity and possibly canal drainage at surface. We also observe a 0.25 per cent velocity decrease for the direct P-wave travelling in the near-surface sediments and conclude that it might be partially biased by changes in time in the noise source properties even though it appears to be consistent with complementary results based on ballistic surface waves presented in a companion paper and interpreted as a pore pressure diffusion effect following a strong rainfall episode. The perspective of applying this new technique to detect continuous localized variations of seismic velocity perturbations at a few kilometres depth paves the way for improved in situ earthquake, volcano and producing reservoir monitoring.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...