ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (2)
  • ground motion prediction  (1)
  • Oxford University Press  (2)
  • PUBLISHING Conspress & editors  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2022-03-16
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: In a recent study (Jozinovi\'c et al, 2020) we showed that convolutional neural networks (CNNs) applied to network seismic traces can be used for rapid prediction of earthquake peak ground motion intensity measures (IMs) at distant stations using only recordings from stations near the epicenter. The predictions are made without any previous knowledge concerning the earthquake location and magnitude. This approach differs from the standard procedure adopted by earthquake early warning systems (EEWSs) that rely on location and magnitude information. In the previous study, we used 10 s, raw, multistation waveforms for the 2016 earthquake sequence in central Italy for 915 events (CI dataset). The CI dataset has a large number of spatially concentrated earthquakes and a dense station network. In this work, we applied the CNN model to an area around the VIRGO gravitational waves observatory sited near Pisa, Italy. In our initial application of the technique, we used a dataset consisting of 266 earthquakes recorded by 39 stations. We found that the CNN model trained using this smaller dataset performed worse compared to the results presented in the original study by Jozinovi\'c et al. (2020). To counter the lack of data, we adopted transfer learning (TL) using two approaches: first, by using a pre-trained model built on the CI dataset and, next, by using a pre-trained model built on a different (seismological) problem that has a larger dataset available for training. We show that the use of TL improves the results in terms of outliers, bias, and variability of the residuals between predicted and true IMs values. We also demonstrate that adding knowledge of station positions as an additional layer in the neural network improves the results. The possible use for EEW is demonstrated by the times for the warnings that would be received at the station PII.
    Description: RISE (Union's Horizon 2020 research and innovation programme, grant agreement No.821115)
    Description: Published
    Description: 704–718
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; machine learning ; ground motion prediction ; seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-27
    Description: Rapid accurate prediction of strong ground shaking can be crucial for earthquake early warning. Recently, machine learning (ML), with its advances in Deep Learning (DL), has shown great potential in analysing seismic waveforms. More specifically, when using the data acquired by a seismic network, the incorporation of additional information consisting of the network station positioning into the DL model has been found beneficial to improve the accuracy of the ground motion predictions (Jozinović et al., 2022). Such spatial information can be exploited thoroughly by adopting graph structures, along with the seismic waveforms. Recent advances in adapting DL to graphs have shown promising potential in various graph- related tasks. However, these methods have not been completely adapted for seismological tasks. In this work, we advance an architecture capable of processing a set of seismic time series acquired by a network of stations using the benefits of Graph Neural Networks (GNNs) (see Fig. 1). The objective of the study is the rapid determination of the ground motion (PGA, PGV, and SA 0.3s, 1s and 3s) at farther stations that have not been yet reached by the strong ground shaking by availing of the first signals recorded at the stations close to the epicentre. The work builds upon the GNN approach proposed in Bloemheuvel et al. (2022) and incorporates transfer learning, see Jozinović et al. (2022). We apply the methodology to two datasets having very different source-receiver geometries sited in central Italy (CI, Jozinović et al., 2020, Jozinović et al., 2022) and in north-western central Italy (CW), respectively (Fig. 2). The two datasets have already been the object of similar studies using convolutional neural networks which serve as baselines for comparison. We find that the GNNs are highly suited for the analysis of seismic data from a set of stations and show improvement when compared to the previous work (Bloemheuvel et al., 2022 and Jozinović et al., 2022). We exemplify the early warning capabilities of the proposed approach.
    Description: Interreg North-West Europe program (Interreg NWE), project Di-Plast - Digital Circular Economy for the Plastics Industry (NWE729), and partially funded by the INGV project Pianeta Dinamico 2021 Tema 8 SOME (grant no. CUP D53J1900017001) funded by the Italian Ministry of University and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese, legge 145/2018” and by the European Union’s Horizon 2020 research and innovation program (grant no. 821115), Real-time Earthquake Risk Reduction for a Resilient Europe (RISE).
    Description: Published
    Description: 4300-4306
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: N/A or not JCR
    Keywords: Graph Neural Networks, Seismogram, Convolutional Neural Networks, Sensors, Regression, Earthquake Ground Motion, Seismic Network, EEW ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: This study describes a deep convolutional neural network (CNN) based technique for the prediction of intensity measurements (IMs) of ground shaking. The input data to the CNN model consists of multistation 3C broadband and accelerometric waveforms recorded during the 2016 Central Italy earthquake sequence for M $\ge$ 3.0. We find that the CNN is capable of predicting accurately the IMs at stations far from the epicenter and that have not yet recorded the maximum ground shaking when using a 10 s window starting at the earthquake origin time. The CNN IM predictions do not require previous knowledge of the earthquake source (location and magnitude). Comparison between the CNN model predictions and the predictions obtained with Bindi et al. (2011) GMPE (which require location and magnitude) has shown that the CNN model features similar error variance but smaller bias. Although the technique is not strictly designed for earthquake early warning, we found that it can provide useful estimates of ground motions within 15-20 sec after earthquake origin time depending on various setup elements (e.g., times for data transmission, computation, latencies). The technique has been tested on raw data without any initial data pre-selection in order to closely replicate real-time data streaming. When noise examples were included with the earthquake data, the CNN was found to be stable predicting accurately the ground shaking intensity corresponding to the noise amplitude.
    Description: Published
    Description: 1379–1389
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...