ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Nature Publishing Group (NPG)  (4)
  • Physics  (4)
Collection
  • Articles  (4)
Years
  • 1
    Publication Date: 2008-10-17
    Description: Neuroblastoma in advanced stages is one of the most intractable paediatric cancers, even with recent therapeutic advances. Neuroblastoma harbours a variety of genetic changes, including a high frequency of MYCN amplification, loss of heterozygosity at 1p36 and 11q, and gain of genetic material from 17q, all of which have been implicated in the pathogenesis of neuroblastoma. However, the scarcity of reliable molecular targets has hampered the development of effective therapeutic agents targeting neuroblastoma. Here we show that the anaplastic lymphoma kinase (ALK), originally identified as a fusion kinase in a subtype of non-Hodgkin's lymphoma (NPM-ALK) and more recently in adenocarcinoma of lung (EML4-ALK), is also a frequent target of genetic alteration in advanced neuroblastoma. According to our genome-wide scans of genetic lesions in 215 primary neuroblastoma samples using high-density single-nucleotide polymorphism genotyping microarrays, the ALK locus, centromeric to the MYCN locus, was identified as a recurrent target of copy number gain and gene amplification. Furthermore, DNA sequencing of ALK revealed eight novel missense mutations in 13 out of 215 (6.1%) fresh tumours and 8 out of 24 (33%) neuroblastoma-derived cell lines. All but one mutation in the primary samples (12 out of 13) were found in stages 3-4 of the disease and were harboured in the kinase domain. The mutated kinases were autophosphorylated and displayed increased kinase activity compared with the wild-type kinase. They were able to transform NIH3T3 fibroblasts as shown by their colony formation ability in soft agar and their capacity to form tumours in nude mice. Furthermore, we demonstrate that downregulation of ALK through RNA interference suppresses proliferation of neuroblastoma cells harbouring mutated ALK. We anticipate that our findings will provide new insights into the pathogenesis of advanced neuroblastoma and that ALK-specific kinase inhibitors might improve its clinical outcome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yuyan -- Takita, Junko -- Choi, Young Lim -- Kato, Motohiro -- Ohira, Miki -- Sanada, Masashi -- Wang, Lili -- Soda, Manabu -- Kikuchi, Akira -- Igarashi, Takashi -- Nakagawara, Akira -- Hayashi, Yasuhide -- Mano, Hiroyuki -- Ogawa, Seishi -- England -- Nature. 2008 Oct 16;455(7215):971-4. doi: 10.1038/nature07399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Chromosomes, Human, Pair 2/genetics ; Fibroblasts ; Gene Dosage/genetics ; Genome, Human/genetics ; Genotype ; Humans ; Mice ; Molecular Sequence Data ; Mutation, Missense/*genetics ; NIH 3T3 Cells ; Neuroblastoma/enzymology/*genetics ; Oligonucleotide Array Sequence Analysis ; Oncogenes/*genetics ; Phosphorylation ; Polymorphism, Single Nucleotide/genetics ; Protein-Tyrosine Kinases/deficiency/*genetics/metabolism ; RNA Interference ; Receptor Protein-Tyrosine Kinases ; Sequence Analysis, DNA ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-05
    Description: A20 is a negative regulator of the NF-kappaB pathway and was initially identified as being rapidly induced after tumour-necrosis factor-alpha stimulation. It has a pivotal role in regulation of the immune response and prevents excessive activation of NF-kappaB in response to a variety of external stimuli; recent genetic studies have disclosed putative associations of polymorphic A20 (also called TNFAIP3) alleles with autoimmune disease risk. However, the involvement of A20 in the development of human cancers is unknown. Here we show, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas. A20 is frequently inactivated by somatic mutations and/or deletions in mucosa-associated tissue lymphoma (18 out of 87; 21.8%) and Hodgkin's lymphoma of nodular sclerosis histology (5 out of 15; 33.3%), and, to a lesser extent, in other B-lineage lymphomas. When re-expressed in a lymphoma-derived cell line with no functional A20 alleles, wild-type A20, but not mutant A20, resulted in suppression of cell growth and induction of apoptosis, accompanied by downregulation of NF-kappaB activation. The A20-deficient cells stably generated tumours in immunodeficient mice, whereas the tumorigenicity was effectively suppressed by re-expression of A20. In A20-deficient cells, suppression of both cell growth and NF-kappaB activity due to re-expression of A20 depended, at least partly, on cell-surface-receptor signalling, including the tumour-necrosis factor receptor. Considering the physiological function of A20 in the negative modulation of NF-kappaB activation induced by multiple upstream stimuli, our findings indicate that uncontrolled signalling of NF-kappaB caused by loss of A20 function is involved in the pathogenesis of subsets of B-lineage lymphomas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Motohiro -- Sanada, Masashi -- Kato, Itaru -- Sato, Yasuharu -- Takita, Junko -- Takeuchi, Kengo -- Niwa, Akira -- Chen, Yuyan -- Nakazaki, Kumi -- Nomoto, Junko -- Asakura, Yoshitaka -- Muto, Satsuki -- Tamura, Azusa -- Iio, Mitsuru -- Akatsuka, Yoshiki -- Hayashi, Yasuhide -- Mori, Hiraku -- Igarashi, Takashi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Shigeo -- Ishikawa, Yuichi -- Okamoto, Koji -- Tobinai, Kensei -- Nakagama, Hitoshi -- Nakahata, Tatsutoshi -- Yoshino, Tadashi -- Kobayashi, Yukio -- Ogawa, Seishi -- England -- Nature. 2009 Jun 4;459(7247):712-6. doi: 10.1038/nature07969. Epub 2009 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, Department of Pediatrics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19412163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/physiology ; Cell Line ; Cysteine Endopeptidases/*genetics/*metabolism ; DNA-Binding Proteins ; Gene Expression ; *Gene Silencing ; Genome/genetics ; Humans ; Intracellular Signaling Peptides and Proteins/*genetics/*metabolism ; Lymphoma, B-Cell/*genetics/*physiopathology ; Mice ; NF-kappa B/genetics/metabolism ; Nuclear Proteins/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-29
    Description: The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark B -- Rozowsky, Joel -- Yan, Koon-Kiu -- Wang, Daifeng -- Cheng, Chao -- Brown, James B -- Davis, Carrie A -- Hillier, LaDeana -- Sisu, Cristina -- Li, Jingyi Jessica -- Pei, Baikang -- Harmanci, Arif O -- Duff, Michael O -- Djebali, Sarah -- Alexander, Roger P -- Alver, Burak H -- Auerbach, Raymond -- Bell, Kimberly -- Bickel, Peter J -- Boeck, Max E -- Boley, Nathan P -- Booth, Benjamin W -- Cherbas, Lucy -- Cherbas, Peter -- Di, Chao -- Dobin, Alex -- Drenkow, Jorg -- Ewing, Brent -- Fang, Gang -- Fastuca, Megan -- Feingold, Elise A -- Frankish, Adam -- Gao, Guanjun -- Good, Peter J -- Guigo, Roderic -- Hammonds, Ann -- Harrow, Jen -- Hoskins, Roger A -- Howald, Cedric -- Hu, Long -- Huang, Haiyan -- Hubbard, Tim J P -- Huynh, Chau -- Jha, Sonali -- Kasper, Dionna -- Kato, Masaomi -- Kaufman, Thomas C -- Kitchen, Robert R -- Ladewig, Erik -- Lagarde, Julien -- Lai, Eric -- Leng, Jing -- Lu, Zhi -- MacCoss, Michael -- May, Gemma -- McWhirter, Rebecca -- Merrihew, Gennifer -- Miller, David M -- Mortazavi, Ali -- Murad, Rabi -- Oliver, Brian -- Olson, Sara -- Park, Peter J -- Pazin, Michael J -- Perrimon, Norbert -- Pervouchine, Dmitri -- Reinke, Valerie -- Reymond, Alexandre -- Robinson, Garrett -- Samsonova, Anastasia -- Saunders, Gary I -- Schlesinger, Felix -- Sethi, Anurag -- Slack, Frank J -- Spencer, William C -- Stoiber, Marcus H -- Strasbourger, Pnina -- Tanzer, Andrea -- Thompson, Owen A -- Wan, Kenneth H -- Wang, Guilin -- Wang, Huaien -- Watkins, Kathie L -- Wen, Jiayu -- Wen, Kejia -- Xue, Chenghai -- Yang, Li -- Yip, Kevin -- Zaleski, Chris -- Zhang, Yan -- Zheng, Henry -- Brenner, Steven E -- Graveley, Brenton R -- Celniker, Susan E -- Gingeras, Thomas R -- Waterston, Robert -- 1U01HG007031-01/HG/NHGRI NIH HHS/ -- 5U01HG004695-04/HG/NHGRI NIH HHS/ -- 5U54HG004555/HG/NHGRI NIH HHS/ -- HG007000/HG/NHGRI NIH HHS/ -- HG007355/HG/NHGRI NIH HHS/ -- K99 HG006698/HG/NHGRI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM076655/GM/NIGMS NIH HHS/ -- RC2-HG005639/HG/NHGRI NIH HHS/ -- T15 LM007056/LM/NLM NIH HHS/ -- T32 HD060555/HD/NICHD NIH HHS/ -- U01 HG 004263/HG/NHGRI NIH HHS/ -- U01 HG004261/HG/NHGRI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG007031/HG/NHGRI NIH HHS/ -- U01-HG004261/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U41 HG007000/HG/NHGRI NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U41 HG007355/HG/NHGRI NIH HHS/ -- U54 HG004555/HG/NHGRI NIH HHS/ -- U54 HG006944/HG/NHGRI NIH HHS/ -- U54 HG006994/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54 HG007005/HG/NHGRI NIH HHS/ -- U54HG007005/HG/NHGRI NIH HHS/ -- WT098051/Wellcome Trust/United Kingdom -- ZIA DK015600-18/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):445-8. doi: 10.1038/nature13424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [3] Department of Computer Science, Yale University, 51 Prospect Street, New Haven, Connecticut 06511, USA [4] [5]. ; 1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [3]. ; 1] Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA [2] Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA [3]. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA [3]. ; 1] Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2]. ; 1] Department of Genome Sciences and University of Washington School of Medicine, William H. Foege Building S350D, 1705 Northeast Pacific Street, Box 355065 Seattle, Washington 98195-5065, USA [2]. ; 1] Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA [2] Department of Statistics, University of California, Los Angeles, California 90095-1554, USA [3] Department of Human Genetics, University of California, Los Angeles, California 90095-7088, USA [4]. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2]. ; 1] Centre for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain [2] Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain [3]. ; 1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, Massachusetts 02115, USA. ; Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA. ; Department of Genome Sciences and University of Washington School of Medicine, William H. Foege Building S350D, 1705 Northeast Pacific Street, Box 355065 Seattle, Washington 98195-5065, USA. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Biostatistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA. ; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA [2] Center for Genomics and Bioinformatics, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA. ; MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; 1] Centre for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain [2] Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain. ; 1] Center for Integrative Genomics, University of Lausanne, Genopode building, Lausanne 1015, Switzerland [2] Swiss Institute of Bioinformatics, Genopode building, Lausanne 1015, Switzerland. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Medical and Molecular Genetics, King's College London, London WC2R 2LS, UK. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA. ; Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, Connecticut 06520, USA. ; Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA. ; Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, New York 10065, USA. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2] Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA. ; Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee 37232-8240, USA. ; 1] Developmental and Cell Biology, University of California, Irvine, California 92697, USA [2] Center for Complex Biological Systems, University of California, Irvine, California 92697, USA. ; Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA. ; 1] Department of Genetics and Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA. ; Center for Integrative Genomics, University of Lausanne, Genopode building, Lausanne 1015, Switzerland. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK. ; 1] Bioinformatics and Genomics Programme, Center for Genomic Regulation, Universitat Pompeu Fabra (CRG-UPF), 08003 Barcelona, Catalonia, Spain [2] Institute for Theoretical Chemistry, Theoretical Biochemistry Group (TBI), University of Vienna, Wahringerstrasse 17/3/303, A-1090 Vienna, Austria. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] 5 CUHK-BGI Innovation Institute of Trans-omics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA [3]. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164755" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/growth & development ; Chromatin/genetics ; Cluster Analysis ; Drosophila melanogaster/*genetics/growth & development ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/genetics ; Histones/metabolism ; Humans ; Larva/genetics/growth & development ; Models, Genetic ; Molecular Sequence Annotation ; Promoter Regions, Genetic/genetics ; Pupa/genetics/growth & development ; RNA, Untranslated/genetics ; Sequence Analysis, RNA ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...