ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-15
    Description: Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flynn, Rachel Litman -- Centore, Richard C -- O'Sullivan, Roderick J -- Rai, Rekha -- Tse, Alice -- Songyang, Zhou -- Chang, Sandy -- Karlseder, Jan -- Zou, Lee -- 5T32CA009216-28/CA/NCI NIH HHS/ -- AG025837/AG/NIA NIH HHS/ -- C133249/PHS HHS/ -- CA129037/CA/NCI NIH HHS/ -- F32-GM089150/GM/NIGMS NIH HHS/ -- GM06525/GM/NIGMS NIH HHS/ -- GM076388/GM/NIGMS NIH HHS/ -- R01 CA129037/CA/NCI NIH HHS/ -- R01 GM076388/GM/NIGMS NIH HHS/ -- R01 GM076388-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):532-6. doi: 10.1038/nature09772. Epub 2011 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21399625" target="_blank"〉PubMed〈/a〉
    Keywords: Aminopeptidases/metabolism ; Ataxia Telangiectasia Mutated Proteins ; Binding, Competitive ; Cell Cycle Proteins/metabolism ; Cell Extracts ; DNA Replication ; DNA, Single-Stranded/*metabolism ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism ; HeLa Cells ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Protein Binding ; Protein-Serine-Threonine Kinases/metabolism ; RNA/genetics/*metabolism ; Replication Protein A/*metabolism ; S Phase ; Serine Proteases/metabolism ; Telomere/*genetics/*metabolism ; Telomere-Binding Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-26
    Description: Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. This phenotype is induced by loss of p53 function, and is suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating that such fusions are the underlying cause of cell death. Exacerbation of mitotic telomere deprotection by partial TRF2 (also known as TERF2) knockdown increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481881/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481881/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Makoto T -- Cesare, Anthony J -- Rivera, Teresa -- Karlseder, Jan -- 5T32CA009370/CA/NCI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 CA174942/CA/NCI NIH HHS/ -- R01 GM087476/GM/NIGMS NIH HHS/ -- R01CA174942/CA/NCI NIH HHS/ -- R01GM087476/GM/NIGMS NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jun 25;522(7557):492-6. doi: 10.1038/nature14513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Gene Mechanisms, Graduate School of Biostudies/The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2] Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia. ; The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26108857" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging ; *Cell Cycle Checkpoints/genetics ; *Cell Death/drug effects/genetics ; Cell Line ; *Chromosome Aberrations ; Chromosomes, Human/genetics/metabolism ; DNA Damage ; Gene Fusion/genetics ; Genomic Instability ; Humans ; *Mitosis/drug effects/genetics ; Neoplasms/drug therapy/genetics/*pathology ; Telomerase/genetics/metabolism ; Telomere/genetics/*metabolism ; Telomeric Repeat Binding Protein 2/deficiency/metabolism ; Tumor Suppressor Protein p53/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...