ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-27
    Description: Understanding the molecular underpinnings of cancer is of critical importance to the development of targeted intervention strategies. Identification of such targets, however, is notoriously difficult and unpredictable. Malignant cell transformation requires the cooperation of a few oncogenic mutations that cause substantial reorganization of many cell features and induce complex changes in gene expression patterns. Genes critical to this multifaceted cellular phenotype have therefore only been identified after signalling pathway analysis or on an ad hoc basis. Our observations that cell transformation by cooperating oncogenic lesions depends on synergistic modulation of downstream signalling circuitry suggest that malignant transformation is a highly cooperative process, involving synergy at multiple levels of regulation, including gene expression. Here we show that a large proportion of genes controlled synergistically by loss-of-function p53 and Ras activation are critical to the malignant state of murine and human colon cells. Notably, 14 out of 24 'cooperation response genes' were found to contribute to tumour formation in gene perturbation experiments. In contrast, only 1 in 14 perturbations of the genes responding in a non-synergistic manner had a similar effect. Synergistic control of gene expression by oncogenic mutations thus emerges as an underlying key to malignancy, and provides an attractive rationale for identifying intervention targets in gene networks downstream of oncogenic gain- and loss-of-function mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613942/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613942/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMurray, Helene R -- Sampson, Erik R -- Compitello, George -- Kinsey, Conan -- Newman, Laurel -- Smith, Bradley -- Chen, Shaw-Ree -- Klebanov, Lev -- Salzman, Peter -- Yakovlev, Andrei -- Land, Hartmut -- CA120317/CA/NCI NIH HHS/ -- CA90663/CA/NCI NIH HHS/ -- GM075299/GM/NIGMS NIH HHS/ -- K99 LM009477/LM/NLM NIH HHS/ -- K99 LM009477-01A1/LM/NLM NIH HHS/ -- R01 CA090663/CA/NCI NIH HHS/ -- R01 CA090663-03/CA/NCI NIH HHS/ -- R01 CA090663-04/CA/NCI NIH HHS/ -- R01 CA090663-05/CA/NCI NIH HHS/ -- R01 CA120317/CA/NCI NIH HHS/ -- R01 CA120317-01A1/CA/NCI NIH HHS/ -- R01 CA120317-02/CA/NCI NIH HHS/ -- R01 GM075299-01/GM/NIGMS NIH HHS/ -- R01 GM075299-02/GM/NIGMS NIH HHS/ -- R01 GM075299-03/GM/NIGMS NIH HHS/ -- R01 GM075299-03S1/GM/NIGMS NIH HHS/ -- T32 CA009363/CA/NCI NIH HHS/ -- T32 CA009363-25/CA/NCI NIH HHS/ -- T32 CA09363/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 19;453(7198):1112-6. doi: 10.1038/nature06973. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500333" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/*genetics ; Colon/cytology/pathology ; Colonic Neoplasms/*genetics ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Genes, ras/genetics ; Genotype ; Humans ; Mice ; Mice, Nude ; Mutation/*genetics ; Neoplasm Transplantation ; Oncogenes/*genetics ; Phenotype
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-12-24
    Description: Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(*-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(*-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(*-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(*-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Chun-An -- Wang, Tse-Yao -- Varadharaj, Saradhadevi -- Reyes, Levy A -- Hemann, Craig -- Talukder, M A Hassan -- Chen, Yeong-Renn -- Druhan, Lawrence J -- Zweier, Jay L -- K99 HL103846/HL/NHLBI NIH HHS/ -- K99 HL103846-02/HL/NHLBI NIH HHS/ -- R01 HL038324/HL/NHLBI NIH HHS/ -- R01 HL038324-20/HL/NHLBI NIH HHS/ -- R01 HL063744/HL/NHLBI NIH HHS/ -- R01 HL063744-09/HL/NHLBI NIH HHS/ -- R01HL103846/HL/NHLBI NIH HHS/ -- R01HL38324/HL/NHLBI NIH HHS/ -- R01HL63744/HL/NHLBI NIH HHS/ -- R01HL65608/HL/NHLBI NIH HHS/ -- R01HL83237/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1115-8. doi: 10.1038/nature09599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cells, Cultured ; Dithiothreitol/pharmacology ; Endothelial Cells/metabolism ; Endothelium, Vascular/*metabolism ; Glutathione/*metabolism ; Humans ; Male ; Mercaptoethanol/pharmacology ; Mutation ; Nitric Oxide Synthase Type III/genetics/*metabolism ; Oxidation-Reduction ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Rats, Sprague-Dawley ; Reducing Agents/pharmacology ; Signal Transduction ; Vasodilation/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-31
    Description: Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded greater understanding of poly(A)-tail function. Here we describe poly(A)-tail length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of millions of individual RNAs isolated from yeasts, cell lines, Arabidopsis thaliana leaves, mouse liver, and zebrafish and frog embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with mRNAs encoding ribosomal proteins and other 'housekeeping' proteins tending to have shorter tails. As expected, tail lengths were coupled to translational efficiencies in early zebrafish and frog embryos. However, this strong coupling diminished at gastrulation and was absent in non-embryonic samples, indicating a rapid developmental switch in the nature of translational control. This switch complements an earlier switch to zygotic transcriptional control and explains why the predominant effect of microRNA-mediated deadenylation concurrently shifts from translational repression to mRNA destabilization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subtelny, Alexander O -- Eichhorn, Stephen W -- Chen, Grace R -- Sive, Hazel -- Bartel, David P -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 3;508(7494):66-71. doi: 10.1038/nature13007. Epub 2014 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA [5]. ; 1] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4]. ; 1] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics ; Base Sequence ; Cell Line ; Drosophila melanogaster/embryology/genetics ; Gastrulation/genetics ; Gene Expression Regulation, Developmental/*genetics ; Humans ; Liver/metabolism ; Mice ; MicroRNAs/genetics/metabolism ; Models, Genetic ; Plant Leaves/genetics ; Poly A/*analysis/genetics ; Protein Biosynthesis/*genetics ; RNA Stability/genetics ; RNA, Messenger/*genetics/metabolism ; Ribosomes/metabolism ; Sequence Analysis, RNA ; Species Specificity ; Transcription, Genetic ; Xenopus/embryology/genetics ; Yeasts/genetics ; Zebrafish/embryology/genetics ; Zygote/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-09
    Description: Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall alpha-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast alpha-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of alpha-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuskin, Fiona -- Lowe, Elisabeth C -- Temple, Max J -- Zhu, Yanping -- Cameron, Elizabeth A -- Pudlo, Nicholas A -- Porter, Nathan T -- Urs, Karthik -- Thompson, Andrew J -- Cartmell, Alan -- Rogowski, Artur -- Hamilton, Brian S -- Chen, Rui -- Tolbert, Thomas J -- Piens, Kathleen -- Bracke, Debby -- Vervecken, Wouter -- Hakki, Zalihe -- Speciale, Gaetano -- Munoz-Munoz, Jose L -- Day, Andrew -- Pena, Maria J -- McLean, Richard -- Suits, Michael D -- Boraston, Alisdair B -- Atherly, Todd -- Ziemer, Cherie J -- Williams, Spencer J -- Davies, Gideon J -- Abbott, D Wade -- Martens, Eric C -- Gilbert, Harry J -- 097907/Wellcome Trust/United Kingdom -- BB/G016127/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- GM090080/GM/NIGMS NIH HHS/ -- MOP-68913/Canadian Institutes of Health Research/Canada -- WT097907AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Jan 8;517(7533):165-9. doi: 10.1038/nature13995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK [2] Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA. ; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA. ; Department of Chemistry, University of York, York YO10 5DD, UK. ; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia. ; Interdisciplinary Biochemistry Graduate Program, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA. ; Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA. ; Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, 2095 Constant Avenue, Lawrence, Kansas 66047, USA. ; Oxyrane, 9052 Ghent, Belgium. ; Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA. ; Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada. ; Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada. ; USDA, Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA. ; 1] Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA [2] Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroidetes/cytology/enzymology/genetics/*metabolism ; Biological Evolution ; Carbohydrate Conformation ; Diet ; Enzymes/genetics/metabolism ; Female ; Gastrointestinal Tract/*microbiology ; Genetic Loci/genetics ; Germ-Free Life ; Glycoproteins/chemistry/metabolism ; Humans ; Male ; Mannans/chemistry/*metabolism ; Mannose/metabolism ; Mice ; *Models, Biological ; Models, Molecular ; Oligosaccharides/chemistry/metabolism ; Periplasm/enzymology ; Yeasts/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...