ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Apoptosomes/metabolism  (1)
  • Base Sequence  (1)
  • Nature Publishing Group (NPG)  (2)
  • 1
    Publication Date: 2009-06-02
    Description: Apoptosis is a conserved form of programmed cell death firmly established in the aetiology, pathogenesis and treatment of many human diseases. Central to the core machinery of apoptosis are the caspases and their proximal regulators. Current models for caspase control involve a balance of opposing elements, with variable contributions from positive and negative regulators among different cell types and species. To advance a comprehensive view of components that support caspase-dependent cell death, we conducted a genome-wide silencing screen in the Drosophila model. Our strategy used a library of double-stranded RNAs together with a chemical antagonist of Inhibitor of apoptosis proteins (IAPs) that simulates the action of native regulators in the Reaper and Smac (also known as Diablo) families. Here we present a highly validated set of targets that is necessary for death provoked by several stimuli. Among these, Tango7 is identified as a new effector. Cells depleted for this gene resisted apoptosis at a step before the induction of effector caspase activity, and the directed silencing of Tango7 in Drosophila prevented caspase-dependent programmed cell death. Unlike known apoptosis regulators in this model system, Tango7 activity did not influence stimulus-dependent loss of Drosophila DIAP1 (also known as th and IAP1), but instead regulated levels of the apical caspase Dronc (Nc). Similarly, the human Tango7 counterpart, PCID1 (also known as EIF3M), impinged on caspase 9, revealing a new regulatory axis affecting the apoptosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777527/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777527/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chew, Su Kit -- Chen, Po -- Link, Nichole -- Galindo, Kathleen A -- Pogue, Kristi -- Abrams, John M -- R01 AA017328/AA/NIAAA NIH HHS/ -- R01 AA017328-01/AA/NIAAA NIH HHS/ -- R01 AA017328-02/AA/NIAAA NIH HHS/ -- R01 GM072124/GM/NIGMS NIH HHS/ -- R01 GM072124-10/GM/NIGMS NIH HHS/ -- R01 GM072124-11/GM/NIGMS NIH HHS/ -- R01 GM072124-12/GM/NIGMS NIH HHS/ -- R01 GM072124-13/GM/NIGMS NIH HHS/ -- R01 GM072124-14A1/GM/NIGMS NIH HHS/ -- R56 GM072124/GM/NIGMS NIH HHS/ -- R56 GM072124-14/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):123-7. doi: 10.1038/nature08087. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*genetics/*physiology ; Apoptosomes/metabolism ; Aryl Hydrocarbon Receptor Nuclear Translocator/genetics/*metabolism ; Caspase 9/metabolism ; Caspases/metabolism ; Conserved Sequence ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/*genetics ; Eukaryotic Initiation Factor-3 ; Eukaryotic Initiation Factors/*metabolism ; *Gene Silencing ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Humans ; Inhibitor of Apoptosis Proteins/antagonists & inhibitors/genetics/metabolism ; Mitochondrial Proteins ; Molecular Mimicry ; RNA Interference ; RNA, Double-Stranded/genetics ; Reproducibility of Results ; Xenopus Proteins
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-12
    Description: High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shalek, Alex K -- Satija, Rahul -- Shuga, Joe -- Trombetta, John J -- Gennert, Dave -- Lu, Diana -- Chen, Peilin -- Gertner, Rona S -- Gaublomme, Jellert T -- Yosef, Nir -- Schwartz, Schraga -- Fowler, Brian -- Weaver, Suzanne -- Wang, Jing -- Wang, Xiaohui -- Ding, Ruihua -- Raychowdhury, Raktima -- Friedman, Nir -- Hacohen, Nir -- Park, Hongkun -- May, Andrew P -- Regev, Aviv -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 19;510(7505):363-9. doi: 10.1038/nature13437. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [4]. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2]. ; 1] Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA [2]. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA. ; School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Center for Immunology and Inflammatory Diseases & Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/pharmacology ; Base Sequence ; Cell Communication ; Dendritic Cells/drug effects/*immunology ; Gene Expression Profiling ; Gene Expression Regulation/*immunology ; Immunity/*genetics ; Interferon-beta/genetics ; Mice ; Microfluidic Analytical Techniques ; *Paracrine Communication ; Principal Component Analysis ; RNA, Messenger/chemistry/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...