ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-24
    Description: The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Yongwei -- Hu, Lin -- Li, Zhe -- Deng, Li -- GM-61591/GM/NIGMS NIH HHS/ -- R01 GM061591/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):445-50. doi: 10.1038/nature14617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201597" target="_blank"〉PubMed〈/a〉
    Keywords: Acrolein/chemistry ; Air ; Amino Alcohols/chemical synthesis/chemistry ; Carbon/chemistry ; Catalysis ; Chemistry Techniques, Synthetic/*methods ; Electrons ; Humidity ; Imines/*chemistry ; Nitrogen/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...