ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-31
    Description: Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palike, Heiko -- Lyle, Mitchell W -- Nishi, Hiroshi -- Raffi, Isabella -- Ridgwell, Andy -- Gamage, Kusali -- Klaus, Adam -- Acton, Gary -- Anderson, Louise -- Backman, Jan -- Baldauf, Jack -- Beltran, Catherine -- Bohaty, Steven M -- Bown, Paul -- Busch, William -- Channell, Jim E T -- Chun, Cecily O J -- Delaney, Margaret -- Dewangan, Pawan -- Dunkley Jones, Tom -- Edgar, Kirsty M -- Evans, Helen -- Fitch, Peter -- Foster, Gavin L -- Gussone, Nikolaus -- Hasegawa, Hitoshi -- Hathorne, Ed C -- Hayashi, Hiroki -- Herrle, Jens O -- Holbourn, Ann -- Hovan, Steve -- Hyeong, Kiseong -- Iijima, Koichi -- Ito, Takashi -- Kamikuri, Shin-ichi -- Kimoto, Katsunori -- Kuroda, Junichiro -- Leon-Rodriguez, Lizette -- Malinverno, Alberto -- Moore, Ted C Jr -- Murphy, Brandon H -- Murphy, Daniel P -- Nakamura, Hideto -- Ogane, Kaoru -- Ohneiser, Christian -- Richter, Carl -- Robinson, Rebecca -- Rohling, Eelco J -- Romero, Oscar -- Sawada, Ken -- Scher, Howie -- Schneider, Leah -- Sluijs, Appy -- Takata, Hiroyuki -- Tian, Jun -- Tsujimoto, Akira -- Wade, Bridget S -- Westerhold, Thomas -- Wilkens, Roy -- Williams, Trevor -- Wilson, Paul A -- Yamamoto, Yuhji -- Yamamoto, Shinya -- Yamazaki, Toshitsugu -- Zeebe, Richard E -- England -- Nature. 2012 Aug 30;488(7413):609-14. doi: 10.1038/nature11360.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK. hpaelike@marum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22932385" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Atmosphere/chemistry ; Calcium Carbonate/*analysis ; *Carbon Cycle ; Carbon Dioxide/analysis ; Diatoms/metabolism ; Foraminifera/metabolism ; Geologic Sediments/chemistry ; Global Warming/history/statistics & numerical data ; History, 21st Century ; History, Ancient ; Marine Biology ; Oxygen/metabolism ; Pacific Ocean ; Seawater/*chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-31
    Description: Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadham, J L -- Arndt, S -- Tulaczyk, S -- Stibal, M -- Tranter, M -- Telling, J -- Lis, G P -- Lawson, E -- Ridgwell, A -- Dubnick, A -- Sharp, M J -- Anesio, A M -- Butler, C E H -- England -- Nature. 2012 Aug 30;488(7413):633-7. doi: 10.1038/nature11374.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK. j.l.wadham@bris.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22932387" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Feedback ; Gases/analysis/chemistry/metabolism ; Geologic Sediments/*chemistry/microbiology ; Global Warming ; Ice Cover ; Methane/*analysis/biosynthesis/chemistry ; Pressure ; Solubility ; Temperature ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-26
    Description: The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (delta(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anagnostou, Eleni -- John, Eleanor H -- Edgar, Kirsty M -- Foster, Gavin L -- Ridgwell, Andy -- Inglis, Gordon N -- Pancost, Richard D -- Lunt, Daniel J -- Pearson, Paul N -- England -- Nature. 2016 Apr 25;533(7603):380-4. doi: 10.1038/nature17423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK. ; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK. ; School of Earth Sciences, Bristol University, Bristol BS8 1RJ, UK. ; School of Geographical Sciences, Bristol University, Bristol BS8 1SS, UK. ; Department of Earth Sciences, University of California, Riverside, California 92521, USA. ; Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. ; Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27111509" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-06-01
    Print ISSN: 1674-487X
    Electronic ISSN: 1867-111X
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-15
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...