ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2020-10-12
    Description: The rapid development of industrialization and urbanization has resulted in a large amount of carbon dioxide (CO2) emissions, which are closely related to the long-term stability of urban surface temperature and the sustainable development of cities in the future. However, there is still a lack of research on the temporal and spatial changes of CO2 emissions in long-term series and their relationship with land surface temperature. In this study, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) data, Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) composite data, energy consumption statistics data and nighttime land surface temperature are selected to realize the spatial informatization of long-term series CO2 emissions in the Yangtze River Delta region, which reveals the spatial and temporal dynamic characteristics of CO2 emissions, spatial autocorrelation distribution patterns and their impacts on nighttime land surface temperature. According to the results, CO2 emissions in the Yangtze River Delta region show an obvious upward trend from 2000 to 2017, with an average annual growth rate of 6.26%, but the growth rate is gradually slowing down. In terms of spatial distribution, the CO2 emissions in that region have significant regional differences. Shanghai, Suzhou and their neighboring cities are the main distribution areas with high CO2 emissions and obvious patch distribution patterns. From the perspective of spatial trend, the areas whose CO2 emissions are of significant growth, relatively significant growth and extremely significant growth account for 8.78%, 4.84% and 0.58%, respectively, with a spatial pattern of increase in the east and no big change in the west. From the perspective of spatial autocorrelation, the global spatial autocorrelation index of CO2 emissions in the Yangtze River Delta region in the past 18 years has been greater than 0.66 (p 〈 0.01), which displays significant positive spatial autocorrelation characteristics, and the spatial agglomeration degree of CO2 emissions continues to increase from 2000 to 2010. From 2000 to 2017, the nighttime land surface temperature in that region showed a warming trend, and the areas where CO2 emissions are positively correlated with nighttime land surface temperature account for 88.98%. The increased CO2 emissions lead to, to a large extent, the rise of nighttime land surface temperature. The research results have important theoretical and practical significance for the Yangtze River Delta region to formulate a regional emission reduction strategy.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-26
    Description: Food security requires a thorough understanding of the spatial characteristics of cultivated land changes on a global scale. In particular, the spatial heterogeneity of global cultivated land changes needs to be evaluated with high spatial resolution data. This study aims to analyse the spatial distribution of global cultivated land and the characteristics of its variation, by using GlobeLand30 data for 2000 and 2010 with a 30-m spatial resolution. The cultivated land percentage and rate of cultivated land use change are calculated based on 18 agro-ecological zones (AEZs), 32 geopolitical and socioeconomic regions, and 283 world regions. The results show that (1) more cultivated land is located in regions under a temperate climate and moderate moisture conditions; (2) the percentage of cultivated land is related to the gross domestic product (GDP) and population, while increases and decreases in cultivated land are related to the rural population, policy encouragement, urbanization, and economic development; and (3) the percentage of cultivated land and rate of land use change within an AEZ vary greatly due to the different socioeconomic conditions, and the values within a geopolitical area also vary, due to different natural conditions.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...