ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-18
    Description: Nitrogen is an essential nutrient for all organisms that must have been available since the origin of life. Abiotic processes including hydrothermal reduction, photochemical reactions, or lightning discharge could have converted atmospheric N2 into assimilable NH4(+), HCN, or NOx species, collectively termed fixed nitrogen. But these sources may have been small on the early Earth, severely limiting the size of the primordial biosphere. The evolution of the nitrogen-fixing enzyme nitrogenase, which reduces atmospheric N2 to organic NH4(+), thus represented a major breakthrough in the radiation of life, but its timing is uncertain. Here we present nitrogen isotope ratios with a mean of 0.0 +/- 1.2 per thousand from marine and fluvial sedimentary rocks of prehnite-pumpellyite to greenschist metamorphic grade between 3.2 and 2.75 billion years ago. These data cannot readily be explained by abiotic processes and therefore suggest biological nitrogen fixation, most probably using molybdenum-based nitrogenase as opposed to other variants that impart significant negative fractionations. Our data place a minimum age constraint of 3.2 billion years on the origin of biological nitrogen fixation and suggest that molybdenum was bioavailable in the mid-Archaean ocean long before the Great Oxidation Event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stueken, Eva E -- Buick, Roger -- Guy, Bradley M -- Koehler, Matthew C -- England -- Nature. 2015 Apr 30;520(7549):666-9. doi: 10.1038/nature14180. Epub 2015 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth &Space Sciences and Astrobiology Program, University of Washington, Seattle, Washington 98195-1310, USA. ; Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686600" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Evolution, Molecular ; Geologic Sediments/chemistry ; History, Ancient ; Molybdenum/*metabolism ; *Nitrogen Fixation ; Nitrogen Isotopes/*analysis ; Nitrogenase/*metabolism ; Oceans and Seas ; Oxidation-Reduction ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-30
    Description: According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3 kg m(-3), compared to today's 1.2 kg m(-3), but because such drops rarely occur, air density was more probably below 1.3 kg m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Som, Sanjoy M -- Catling, David C -- Harnmeijer, Jelte P -- Polivka, Peter M -- Buick, Roger -- England -- Nature. 2012 Mar 28;484(7394):359-62. doi: 10.1038/nature10890.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Space Sciences and Astrobiology Program, University of Washington, Seattle, Washington 98195-1310, USA. sanjoy.m.som@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456703" target="_blank"〉PubMed〈/a〉
    Keywords: Air/*analysis ; *Atmospheric Pressure ; Carbon Dioxide/analysis ; Climate Change/history ; *Fossils ; History, Ancient ; Nitrogen/analysis ; Oxygen/analysis ; *Rain ; South Africa ; Temperature ; Volcanic Eruptions/history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buick, Roger -- England -- Nature. 2010 Feb 18;463(7283):885-6. doi: 10.1038/463885a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164911" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/chemistry/cytology ; China ; Eukaryotic Cells/chemistry/cytology ; *Fossils ; Geologic Sediments/*microbiology ; History, Ancient ; Oceans and Seas ; *Phylogeny ; Reproducibility of Results ; Seawater/*microbiology ; South Africa
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zahnle, Kevin -- Buick, Roger -- England -- Nature. 2016 May 11;533(7602):184-6. doi: 10.1038/533184a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science Division, NASA Ames Research Centre, Moffett Field, California 94035-1000, USA. ; Department of Earth &Space Sciences, and in the Astrobiology Program, University of Washington, Seattle, Washington 98195-1310, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27172041" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-01
    Print ISSN: 1531-1074
    Electronic ISSN: 1557-8070
    Topics: Biology , Physics
    Published by Mary Ann Liebert
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1980-04-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...