ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (2)
  • MDPI  (1)
  • Oxford University Press  (1)
  • 1
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: This study describes a deep convolutional neural network (CNN) based technique for the prediction of intensity measurements (IMs) of ground shaking. The input data to the CNN model consists of multistation 3C broadband and accelerometric waveforms recorded during the 2016 Central Italy earthquake sequence for M $\ge$ 3.0. We find that the CNN is capable of predicting accurately the IMs at stations far from the epicenter and that have not yet recorded the maximum ground shaking when using a 10 s window starting at the earthquake origin time. The CNN IM predictions do not require previous knowledge of the earthquake source (location and magnitude). Comparison between the CNN model predictions and the predictions obtained with Bindi et al. (2011) GMPE (which require location and magnitude) has shown that the CNN model features similar error variance but smaller bias. Although the technique is not strictly designed for earthquake early warning, we found that it can provide useful estimates of ground motions within 15-20 sec after earthquake origin time depending on various setup elements (e.g., times for data transmission, computation, latencies). The technique has been tested on raw data without any initial data pre-selection in order to closely replicate real-time data streaming. When noise examples were included with the earthquake data, the CNN was found to be stable predicting accurately the ground shaking intensity corresponding to the noise amplitude.
    Description: Published
    Description: 1379–1389
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-27
    Description: Non-stationary signals are often analyzed using raw waveform data or spectrograms of those data; however, the possibility of alternative time–frequency representations being more informative than the original data or spectrograms is yet to be investigated. This paper tested whether alternative time–frequency representations could be more informative for machine learning classification of seismological data. The mentioned hypothesis was evaluated by training three well-established convolutional neural networks using nine time–frequency representations. The results were compared to the base model, which was trained on the raw waveform data. The signals that were used in the experiment are three-component seismogram instances from the Local Earthquakes and Noise DataBase (LEN-DB). The results demonstrate that Pseudo Wigner–Ville and Wigner–Ville time–frequency representations yield significantly better results than the base model, while spectrogram and Margenau–Hill perform significantly worse (p 〈 0.01). Interestingly, the spectrogram, which is often used in signal analysis, had inferior performance when compared to the base model. The findings presented in this research could have notable impacts in the fields of geophysics and seismology as the phenomena that were previously hidden in the seismic noise are now more easily identified. Furthermore, the results indicate that applying Pseudo Wigner–Ville or Wigner–Ville time–frequency representations could result in a large increase in earthquakes in the catalogs and lessen the need to add new stations with an overall reduction in the costs. Finally, the proposed approach of extracting valuable information through time–frequency representations could be applied in other domains as well, such as electroencephalogram and electrocardiogram signal analysis, speech recognition, gravitational waves investigation, and so on.
    Description: COST project G2Net CA17137 A network for Gravitational Waves, Geophysics and Machine Learning.
    Description: Published
    Description: 965
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Keywords: earthquake detection; convolutional neural network; non-stationary signal analysis; classification; time–frequency representation ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...