ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Beaufort Gyre  (3)
  • Mesoscale eddies  (2)
  • Arctic climate variability
  • John Wiley & Sons  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8800–8817, doi:10.1002/2014JC010488.
    Description: Ice-Tethered Profilers (ITP), deployed in the Arctic Ocean between 2004 and 2013, have provided detailed temperature and salinity measurements of an assortment of halocline eddies. A total of 127 mesoscale eddies have been detected, 95% of which were anticyclones, the majority of which had anomalously cold cores. These cold-core anticyclonic eddies were observed in the Beaufort Gyre region (Canadian water eddies) and the vicinity of the Transpolar Drift Stream (Eurasian water eddies). An Arctic-wide calculation of the first baroclinic Rossby deformation radius Rd has been made using ITP data coupled with climatology; Rd ∼ 13 km in the Canadian water and ∼8 km in the Eurasian water. The observed eddies are found to have scales comparable to Rd. Halocline eddies are in cyclogeostrophic balance and can be described by a Rankine vortex with maximum azimuthal speeds between 0.05 and 0.4 m/s. The relationship between radius and thickness for the eddies is consistent with adjustment to the ambient stratification. Eddies may be divided into four groups, each characterized by distinct core depths and core temperature and salinity properties, suggesting multiple source regions and enabling speculation of varying formation mechanisms.
    Description: Funding was provided by the National Science Foundation Polar Programs award ARC-1107623.
    Description: 2015-06-22
    Keywords: Arctic halocline ; Rossby deformation radius ; Mesoscale eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 8106–8114, doi:10.1002/2016GL069671.
    Description: The eddy field across the Arctic Ocean's Canada Basin is analyzed using Ice-Tethered Profiler (ITP) and moored measurements of temperature, salinity, and velocity spanning 2005 to 2015. ITPs encountered 243 eddies, 98% of which were anticyclones, with approximately 70% of these having anomalously cold cores. The spatially and temporally varying eddy field is analyzed accounting for sampling biases in the unevenly distributed ITP data and caveats in detection methods. The highest concentration of eddies was found in the western and southern portions of the basin, close to topographic margins and boundaries of the Beaufort Gyre. The number of lower halocline eddies approximately doubled from 2005–2012 to 2013–2014. The increased eddy density suggests more active baroclinic instability of the Beaufort Gyre that releases available potential energy to balance the wind energy input; this may stabilize the Gyre spin-up and associated freshwater increase.
    Description: National Science Foundation Division of Polar Programs Grant Number: 1350046
    Description: 2017-02-03
    Keywords: Arctic Ocean ; Eddies ; Beaufort Gyre
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4806-4819, doi:10.1029/2018JC014037.
    Description: Kinetic energy (KE) in the Arctic Ocean's Beaufort Gyre is dominated by the mesoscale eddy field that plays a central role in the transport of freshwater, heat, and biogeochemical tracers. Understanding Beaufort Gyre KE variability sheds light on how this freshwater reservoir responds to wind forcing and sea ice and ocean changes. The evolution and fate of mesoscale eddies relate to energy pathways in the ocean (e.g., the exchange of energy between barotropic and baroclinic modes). Mooring measurements of horizontal velocities in the Beaufort Gyre are analyzed to partition KE into barotropic and baroclinic modes and explore their evolution. We find that a significant fraction of water column KE is in the barotropic and the first two baroclinic modes. We explain this energy partitioning by quantifying the energy transfer coefficients between the vertical modes using the quasi‐geostrophic potential vorticity conservation equations with a specific background stratification observed in the Beaufort Gyre. We find that the quasi‐geostrophic vertical mode interactions uphold the persistence of KE in the first two baroclinic modes, consistent with observations. Our results explain the specific role of halocline structure on KE evolution in the gyre and suggest depressed transfer to the barotropic mode. This limits the capacity for frictional dissipation at the sea floor and suggests that energy dissipation via sea ice‐ocean drag may be prominent.
    Description: National Science Foundation Division of Polar Programs Grant Number: 1107623
    Description: 2019-01-10
    Keywords: Beaufort Gyre kinetic energy ; Mesoscale eddies ; Energy pathways ; Barotropic and baroclinic modes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1271-1305, doi:10.1002/2013JC008999.
    Description: Time series of ice draft from 2003 to 2012 from moored sonar data are used to investigate variability and describe the reduction of the perennial sea ice cover in the Beaufort Gyre (BG), culminating in the extreme minimum in 2012. Negative trends in median ice drafts and most ice fractions are observed, while open water and thinnest ice fractions (〈0.3 m) have increased, attesting to the ablation or removal of the older sea ice from the BG over the 9 year period. Monthly anomalies indicate a shift occurred toward thinner ice after 2007, in which the thicker ice evident at the northern stations was reduced. Differences in the ice characteristics between all of the stations also diminished, so that the ice cover throughout the region became statistically homogenous. The moored data are used in a relationship with satellite radiometer data to estimate ice volume changes throughout the BG. Summer solid fresh water content decreased drastically in consecutive years from 730 km3 in 2006 to 570 km3 in 2007, and to 240 km3 in 2008. After a short rebound, solid fresh water fell below 220 km3 in 2012. Meanwhile, hydrographic data indicate that liquid fresh water in the BG in summer increased 5410 km3 from 2003 to 2010 and decreased at least 210 km3 by 2012. The reduction of both solid and liquid fresh water components indicates a net export of approximately 320 km3 of fresh water from the region occurred between 2010 and 2012, suggesting that the anticyclonic atmosphere-ocean circulation has weakened.
    Description: Support for Krishfield, Proshutinsky, and Timmermans, partial financial support of logistics, hydrographic observations on the board of Canadian icebreaker, and full financial coverage of all mooring instrumentation was provided by the National Science Foundation (under grants OPP-0230184, OPP-0424864, ARC-0722694, ARC-0806306, ARC- 0856531, ARC-1107277, and ARC- 1203720), and Woods Hole Oceanographic Institution internal funding. Funding for Tateyama was provided by the International Arctic Research Center – Japan Aerospace Exploration Agency (IJIS) Arctic project, and for Williams, Carmack, and McLaughlin by Fisheries and Oceans Canada.
    Keywords: Ice draft ; Beaufort Gyre ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 12,331–12,338, doi:10.1002/2017GL075126.
    Description: Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially and decays with depth, with values of 50–400 m2/s. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m2/s to more than 600 m2/s. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.
    Description: National Science Fundation Grant Numbers: 1603557, 1355668, 1602926
    Description: 2018-06-26
    Keywords: Eddy diffusivity ; Beaufort Gyre ; Observation ; Freshwater budget ; Ekman pumping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...