ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 10 (9). 094001.
    Publication Date: 2017-04-12
    Description: While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. An important source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration-sensitivities to CO2. Changing the sensitivity of transpiration to CO2 causes simulated terrestrial precipitation to change by −10% to +27% by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-23
    Description: Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 6 (4). 045001.
    Publication Date: 2019-09-23
    Description: Waters of the Atlantic and Pacific tropical oxygen minimum zones (OMZs), located in the poorly ventilated shadow zones of their respective ocean basins, reach the sea surface mostly in the eastern boundary and equatorial upwelling regions, thereby providing nutrients sustaining elevated biological productivity. Associated export of sinking organic matter leads to oxygen consumption at depth, and thereby helps to maintain the tropical OMZs. Biogeochemical feedback processes between nutrient-rich OMZ waters and biological production in the upwelling regions and their net impact on the evolution of the OMZs depend on the strengths of the flow pathways connecting OMZs and the upper ocean, because even though water has to be isolated below the mixed layer for some time in order for OMZs to develop, it has to be brought up to the surface mixed layer eventually in order to exchange properties with the atmosphere. Here, we investigate the connections between OMZs and the surface mixed layer, and their sensitivity to global warming with a coupled ocean–atmosphere general circulation model by analyzing the fate of simulated floats released in the OMZs. We find that under present-day climate conditions, on decadal time scales a much larger portion of the model's OMZ waters reaches the surface ocean in the Pacific than in the Atlantic Ocean: within 20 years, 75% in the Pacific and 38% in the Atlantic. When atmospheric CO2 is doubled, the fraction of modeled OMZ waters reaching the upwelling in the same time decreases by about 25% in both oceans. As a consequence, feedback between biogeochemical processes in OMZs and in the surface ocean is likely to be weakened in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 14 (10). Art.Nr. 104004.
    Publication Date: 2022-01-31
    Description: Intentionally removing carbon from the atmosphere with negative emission technologies (NETs) will be important to achieve net-zero emissions by mid-century and to limit global warming to 2 °C or even 1.5 °C (IPCC 2018). Model scenarios that consider NETs as part of mitigation pathways are still largely restricted to afforestation and bioenergy with carbon capture and storage (BECCS), while the '[f]easibility and sustainability of [NETs] use could be enhanced by a portfolio of options deployed at substantial, but lesser scales, rather than a single option at very large scale' (IPCC 2018, p 19). Here, we show the results from an anonymous expert survey, including 32 Earth-System-Model (ESM) experts and 18 Integrated-Assessment-Model (IAM) experts, about the role of NETs in future climate policies and about how well the various technologies are represented in current models. We find that they strongly support the view that technology portfolios are required to achieve negative emissions, however, the responses show that the number and range of NETs that can be assessed in IAMs is small and that IAMs and ESMs are rather applied to analyze technologies separately than in combination. IAM experts in particular consider BECCS as part of a future NETs portfolio; but at the same time, all experts judge the constraints BECCS would face regarding future overall feasibility and more particularly regarding resource competition to be the highest. Regarding the assessment of constraints the ESM experts are much more skeptical than the IAM experts; they also think that the BECCS carbon removal pathways are less sufficiently represented in ESMs compared to what the IAM experts thinks about the representation in their models. Despite the perceived need for NETs portfolios, the range of NETs which can be assessed in IAMs is rather small and ocean NETs have, so far, mostly been overlooked by the IAM experts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Iron is represented in biogeochemical ocean models by a variety of structurally different approaches employing generally poorly constrained empirical parameterizations. Increasing the structural complexity of iron modules also increases computational costs and introduces additional uncertainties, with as yet unclear benefits. In order to demonstrate the benefits of explicitly representing iron, we calibrate a hierarchy of iron modules and evaluate the remaining model-data misfit. The first module includes a complex iron cycle with major processes resolved explicitly, the second module applies iron limitation in primary production using prescribed monthly iron concentration fields, and the third module does not explicitly include iron effects at all. All three modules are embedded into the same circulation model. Models are calibrated against global data sets of NO3, PO4 and O2 applying a state-of-the-art multi-variable constraint parameter optimization. The model with fully resolved iron cycle is marginally (up to 4.8%) better at representing global distributions of NO3, PO4 and O2 compared to models with implicit or absent parameterizations of iron. We also found a slow down of global surface nutrient cycling by about 30% and a shift of productivity from the tropics to temperate regions for the explicit iron module. The explicit iron model also reduces the otherwise overestimated volume of suboxic waters, yielding results closer to observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-22
    Description: Carbon dioxide removal (CDR) is discussed for offsetting residual greenhouse gas emissions or even reversing climate change. All emissions scenarios of the Intergovernmental Panel on Climate Change that meet the ‘well below 2 °C’ warming target of the Paris Agreement include CDR. Ocean alkalinity enhancement (OAE) may be one possible CDR where the carbon uptake of the ocean is increased by artificial alkalinity addition. Here, we investigate the effect of OAE on modelled carbon reservoirs and fluxes in two observationally-constrained large perturbed parameter ensembles. OAE is assumed to be technically successful and deployed as an additional CDR in the SSP5-3.4 temperature overshoot scenario. Tradeoffs involving feedbacks with atmospheric CO 2 result in a low efficiency of an alkalinity-driven atmospheric CO 2 reduction of −0.35 [−0.37 to −0.33] mol C per mol alkalinity addition (skill-weighted mean and 68% c.i.). The realized atmospheric CO 2 reduction, and correspondingly the efficiency, is more than two times smaller than the direct alkalinity-driven enhancement of ocean uptake. The alkalinity-driven ocean carbon uptake is partly offset by the release of carbon from the land biosphere and a reduced ocean carbon sink in response to lowered atmospheric CO 2 under OAE. In a second step we use the Bern3D-LPX model in CO 2 peak-decline simulations to address hysteresis and temporal lags of surface air temperature change (ΔSAT) in an idealized scenario where ΔSAT increases to ~2 °C and then declines to ~1.5 °C as result of CDR. ΔSAT lags the decline in CO 2 -forcing by 18 [14–22] years, depending close to linearly on the equilibrium climate sensitivity of the respective ensemble member. These tradeoffs and lags are an inherent feature of the Earth system response to changes in atmospheric CO 2 and will therefore be equally important for other CDR methods.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...