ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2021-05-19
    Description: Recently, measurements of oxygen concentration in the ocean-one of the most classical parameters in chemical oceanography-are experiencing a revival. This is not surprising, given the key role of oxygen for assessing the status of the marine carbon cycle and feeling the pulse of the biological pump. The revival, however, has to a large extent been driven by the availability of robust optical oxygen sensors and their painstakingly thorough characterization. For autonomous observations, oxygen optodes are the sensors of choice: They are used abundantly on Biogeochemical-Argo floats, gliders and other autonomous oceanographic observation platforms. Still, data quality and accuracy are often suboptimal, in some part because sensor and data treatment are not always straightforward and/or sensor characteristics are not adequately taken into account. Here, we want to summarize the current knowledge about oxygen optodes, their working principle as well as their behavior with respect to oxygen, temperature, hydrostatic pressure, and response time. The focus will lie on the most widely used and accepted optodes made by Aanderaa and Sea-Bird. We revisit the essentials and caveats of in-situ in air calibration as well as of time response correction for profiling applications, and provide requirements for a successful field deployment. In addition, all required steps to post-correct oxygen optode data will be discussed. We hope this summary will serve as a comprehensive, yet concise reference to help people get started with oxygen observations, ensure successful sensor deployments and acquisition of highest quality data, and facilitate post-treatment of oxygen data. In the end, we hope that this will lead to more and higher-quality oxygen observations and help to advance our understanding of ocean biogeochemistry in a changing ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Regional climate variability in the tropical Atlantic, from interannual to decadal time scales, is inevitably connected to changes in the strength and position of the individual components of the tropical current system with impacts on societally relevant climate hazards such as anomalous rainfall or droughts over the surrounding continents (Bourlès et al., 2019; Foltz et al., 2019). Furthermore, the lateral supply of dissolved oxygen in the tropical Atlantic upper-ocean is closely linked to the zonal current bands (Brandt et al., 2008; Brandt et al., 2012; Burmeister et al., 2020) and especially to the Equatorial Undercurrent (EUC) and its long-term variations with potential implications for regional marine ecosystems (Brandt et al., 2021). The eastward flowing EUC is located between 70 to 200 m depth and forms one of the strongest tropical currents with maximum velocities of up to 1 m s-1 and maximum variability on seasonal time scales (Brandt et al., 2014; Johns et al., 2014). In the intermediate to deep equatorial Atlantic, variability on longer time scales is mainly governed by alternating, vertically-stacked, zonal currents (equatorial deep jets (EDJs); Johnson and Zhang, 2003). At a fixed location, the phases of these jets are propagating downward with time, implying that parts of their energy must propagate upward towards the surface (Brandt et al., 2011). In fact, a pronounced interannual cycle of about 4.5 years, that is associated with EDJs, is projected onto surface parameters such as sea surface temperature or precipitation (Brandt et al., 2011) further demonstrating the importance of understanding equatorial circulation variability and its role in tropical climate variability. While variability in the zonal velocity component on the equator is focused on seasonal to interannual time scales (Brandt et al., 2016; Claus et al., 2016; Kopte et al., 2018), meridional velocity fluctuations dominate the intraseasonal period range (20 to 50 days) due to the presence and passage of westward propagating Tropical Instability Waves (TIWs; Grodsky et al., 2005; Bunge et al., 2007; Wenegrat and McPhaden, 2015; Tuchen et al., 2018; Specht et al., 2021). In general, intraseasonal variability in the central equatorial Atlantic is mainly attributed to TIWs in the upper ocean (Athie and Marin, 2008), while intraseasonal variability in the deep ocean is associated with the signature of equatorial Yanai waves (Ascani et al., 2015; Tuchen et al., 2018, Körner et al., 2022). The observed and modelled interaction between intraseasonal equatorial waves and the aforementioned EDJs was found to maintain the deep equatorial circulation against dissipation (Greatbatch et al., 2018; Bastin et al., 2020) pointing toward the importance of intraseasonal variability for equatorial ocean dynamics. These findings are largely based on, or underpinned by a unique and steadily expanding data set of current velocity observations in the central equatorial Atlantic Ocean. Since 2001, current velocities have been measured almost continuously as part of a multilateral collaboration, the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA), that regularly services a moored observatory located at 0°N/23°W (Bourlès et al., 2019). The significance of this data set is characterized by the length of the time series and by the full-depth coverage of current velocity observations which allow for a detailed analysis of both upper-ocean and deep-ocean dynamics on a wide range of time scales and frequencies. For instance, it enables the decomposition of the current velocity time series into vertical modes pointing toward the existence of resonant basin modes and identifying different sources of deep intraseasonal variability (Brandt et al., 2016; Claus et al., 2016; Greatbatch et al., 2018; Tuchen et al., 2018, Körner et al. under review). Here, we present 20 years of full-depth current velocity observations at 0°N/23°W. The aim of this study is to provide the scientific community with a publicly available reference data set that could be used in manifold ways, including, for instance, the validation of ocean models or reanalysis products.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: From 2008 through 2019, a comprehensive research project, SFB 754, Climate - Biogeochemistry Interactions in the Tropical Ocean, was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tuchen, F., Brandt, P., Hahn, J., Hummels, R., Krahmann, G., Bourlès, B., Provost, C., McPhaden, M., & Toole, J. Two decades of full-depth current velocity observations from a moored observatory in the central equatorial Atlantic at 0°N, 23°W. Frontiers in Marine Science, 9, (2022): 910979, https://doi.org/10.3389/fmars.2022.910979.
    Description: Regional climate variability in the tropical Atlantic, from interannual to decadal time scales, is inevitably connected to changes in the strength and position of the individual components of the tropical current system with impacts on societally relevant climate hazards such as anomalous rainfall or droughts over the surrounding continents (Bourlès et al., 2019; Foltz et al., 2019). Furthermore, the lateral supply of dissolved oxygen in the tropical Atlantic upper-ocean is closely linked to the zonal current bands (Brandt et al., 2008; Brandt et al., 2012; Burmeister et al., 2020) and especially to the Equatorial Undercurrent (EUC) and its long-term variations with potential implications for regional marine ecosystems (Brandt et al., 2021). The eastward flowing EUC is located between 70 to 200 m depth and forms one of the strongest tropical currents with maximum velocities of up to 1 m s-1 and maximum variability on seasonal time scales (Brandt et al., 2014; Johns et al., 2014). In the intermediate to deep equatorial Atlantic, variability on longer time scales is mainly governed by alternating, vertically-stacked, zonal currents (equatorial deep jets (EDJs); Johnson and Zhang, 2003). At a fixed location, the phases of these jets are propagating downward with time, implying that parts of their energy must propagate upward towards the surface (Brandt et al., 2011). In fact, a pronounced interannual cycle of about 4.5 years, that is associated with EDJs, is projected onto surface parameters such as sea surface temperature or precipitation (Brandt et al., 2011) further demonstrating the importance of understanding equatorial circulation variability and its role in tropical climate variability.
    Description: This study was funded by EU H2020 under grant agreement 817578 TRIATLAS project, by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich754 “Climate–Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor, RV Maria S. Merian, RV L'Atalante, and RV Sonne and by the Deutsche Bundesministerium für Bildung und Forschung (BMBF) as part of the projects RACE (03F06518) and by the European Union 7th Framework Programme (FP7) under Grant Agreement 603521. Moored velocity observations were acquired in cooperation with the PIRATA project supported by NOAA (USA), IRD and Meteo-France (France), INPE (Brazil) and the Brazil Navy. This research was performed while FPT held an NRC Research Associateship Award at NOAA’s Atlantic Oceanographic and Meteorological Laboratory. FPT, PB, JH, RH, and GK are grateful for continuing support from GEOMAR Helmholtz Centre for Ocean Research Kiel. MM acknowledges the support of NOAA; PMEL contribution no. 5359. JT's contributions to this study were supported by the U.S. National Science Foundation.
    Keywords: Ocean observations ; Physical oceanography ; Equatorial Atlantic circulation ; Ocean currents ; Moored observations ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...