ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters  (3)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (2)
  • gas chemistry  (1)
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
  • Astronomy
  • E31
  • J24
  • Mt.Etna
  • Geological Society of Greece  (2)
  • Elsevier - Procedia Earth and Planetary Science vol. 17  (1)
  • European Geoscience Union  (1)
Collection
Years
  • 1
    Publication Date: 2021-06-15
    Description: Twenty-two gas samples were collected in August 2012 in the area of Amik basin (Turkey). Two samples were collected from gas seeps, one was a bubbling gas in a thermal spring, while the remaining were dissolved gases from cold and thermal groundwaters (T 16-43 °C). All gases were analysed for their chemical composition (He, H2, O2, N2, CH4 and CO2) and for their He isotopic composition. Dissolved gases were also analysed for the carbon isotopic composition of the total dissolved carbon (TDC), while free gases also for their higher hydrocarbon (C1 – C5) content and for D of H2 and CH4, 13C of CH4 Basing on their chemical composition, the gases can be roughly subdivided in three groups. Most of the dissolved gases (16) belonging to the first group were collected from springs or shallow wells (〈 150 m depth). All these samples contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1 – 2700 ppm) contents and minor concentrations of CO2 (0.5 – 11.2 %). The isotopic composition of TDC evidences an almost organic contribution. The only exception is represented by the CO2-richest sample where a small but significant mantle contribution is found. Such contribution can also be evidenced in its 3He rich isotopic composition. Further three samples of this group evidence a small mantle contribution. These samples were collected in the northern part of the basin along the main tectonic structures delimiting the basin and close to areas with quaternary volcanic activity. A second group is composed by two dissolved gases collected from deep boreholes (〉 1200 m depth). Their composition is typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). Also the water composition is typical of saline connate waters (Cl- and B-rich, SO4-poor). C-isotopic composition of methane ( 13C -65% ) points to a biogenic origin while He-isotopic composition indicates a prevailing crustal signature for one (R/Ra 0.16) of the sites and small mantle contribution for the other (R/Ra 0.98). To the last group belong four gas samples taken at two sites within the ophiolitic basement that crops out west of the basin. These gases have the characteristic composition of gas generated by low temperature serpentinisation processes with high hydrogen (37 – 50 %) and methane (10 – 61 %) concentrations. While all gases show an almost identical D-H2 of -750h those of one of the two sites display an isotopic composition of methane ( 13C -5h D -105% ) and a C1/[C2+C3] ( 100) ratio typical of abiogenic hydrocarbons and mantle-type helium (R/Ra: 1.33), while those of the other site evidence a contribution of a crustal (thermogenic) component ( 13C-CH4 -30h D -325h C1/[C2+C3] 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07). The preliminary results highlight contributions of mantle-derived volatiles to the fluids vented along the Amik Basin. The main tectonic structure of the area, the Death Sea Fault, and other parallel structures crossing the basin seem to be the responsible for deep-originated volatiles drainage towards shallow levels.
    Description: Submitted
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: gas geochemistry ; water chemistry ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey on the fluids released by the volcanic/geothermal system of Methana was undertaken. Characterization of the gases was made on the basis of the chemical and isotopic (He and C) analysis of 14 samples. CO2 soil gas concentration and fluxes were measured on the whole peninsula at more than 100 sampling sites. 31 samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of aquifers. Anomalies referable to the geothermal system, besides at known thermal manifesta-tions, were also recognized at some anomalous degassing soil site and in some cold groundwater. These anomalies were always spatially correlated to the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated in about 0.2 kg s-1. Although this value is low compared to other volcanic systems, anomalous CO2 degassing at Methana may pose gas hazard problems. Such volcanic risk, although restricted to limited areas, cannot be neglected and further studies have to be undertaken for its better assessment
    Description: Published
    Description: 712-722
    Description: N/A or not JCR
    Description: open
    Keywords: soil gases ; CO2 fluxes ; gas hazard ; groundwater chemistry ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-21
    Description: The Greek region is characterized by intense geodynamic activity with widespread volcanic, geothermal and seismic activity. Its complex geology is reflected in the large variety of chemical and isotopic composition of its gas manifestations. Basing on their chemical composition the gases can be subdivided in three groups, respectively CO2, CH4 or N2-dominated. On oxygen-free basis these three gases make up more than 97% of the total composition. The only exceptions are fumarolic gases of Nisyros that contain substantial amounts of H2S (up to more than 20%) and one sample of Milos that contains 15% of H2. CO2-dominated gases with clear mantle contribution in their He isotopic composition (R/Ra corrected for air contamination ranging from 0.5 to 5.7) are found along the subduction-related south Aegean active volcanic arc and on the Greek mainland close to recent (upper Miocene to Pleistocene) volcanic centers. These areas are generally characterized by active or recent extensive tectonic activity and high geothermal gradients. On the contrary, gases sampled in the more external nappes of the Hellenide orogen have generally a CH4- or N2-rich compositions and helium isotope composition with a dominant crustal contribution (R/Ra corr 〈 0.2). The chemical and isotopic characteristics of the emitted gas display therefore a clear relationship with the different geodynamic sectors of the region. Gas geochemistry of the area contributes to a better definition of the crust-mantle setting of the Hellenic region.
    Description: Published
    Description: 2327-2337
    Description: Patras, Greece
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: N/A or not JCR
    Description: open
    Keywords: natural gas manifestations ; gas chemistry ; He- and C-isotope composition ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier - Procedia Earth and Planetary Science vol. 17
    Publication Date: 2017-04-04
    Description: Zr and Hf are two elements having same ionic charge and similar ionic size at a given coordination number. Despite the Zr/Hf ratio is considered to be quite constant in meteorites and lithospheric rocks, seawaters collected from the surface down to varying depths of several Pacific Ocean stations reveal that the Zr/Hf ratio increases by one order of magnitude. Very recent studies have shown that, in both ground waters and lake waters, the Zr/Hf ratio is either higher or lower compared to the interacting minerals displaying a large variability in the distribution of these twin elements. In this communication the possible processes responsible for such a large fractionation are discussed but further work is needed to test the validity of these interpretations. This basic problem of scientific significance needs more attention from the water-rock interaction community.
    Description: Published
    Description: Evora, Portugal
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Zr/Hf ratio ; natural waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...