ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-21
    Description: Alkaline volcanic rocks including nephelinites, basanites and trachybasalts dredged from the volcanic pedestal of Rakahanga Atoll and from a volcanic edifice with 100 satellite volcanoes at the eastern edge of the Manihiki Plateau, ca. 40 km southwest of the atoll, fall well within the category of EM-type ocean island basalts. They indicate a hotspot involvement during the formation of the plateau basement. The rocks are thought to be products of explosive eruptions which took place subaerially or in shallow water in the Aptian. The volcanoes, together with other volcanic eruption centers, most likely were responsible for the formation of the 230 m thick volcaniclastite layer which rests on the basement for at least 5000 km2 of the eastern part of the Manihiki Plateau. Erosion has prevented any substantial sediment cover on the volcanic cone field and most of the slope of Rakahanga and thin pelagic limestones were deposited instead at least since the Maastrichtian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates.Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates 〉0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow.Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets).Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Highlights: • Ocean acidification increases phytoplankton standing stock. • This increase is more pronounced in smaller-sized taxa. • Primary consumers reac differently depending on nutrient availability. • Bacteria and micro-heterotrophs benefited under limiting conditions. • In general, heterotrophs are negatively affected at nutrient replete periods. Abstract: In situ mesocosm experiments on the effect of ocean acidification (OA) are an important tool for investigating potential OA-induced changes in natural plankton communities. In this study we combined results from various in-situ mesocosm studies in two different ocean regions (Arctic and temperate waters) to reveal general patterns of plankton community shifts in response to OA and how these changes are modulated by inorganic nutrient availability. Overall, simulated OA caused an increase in phytoplankton standing stock, which was more pronounced in smaller-sized taxa. This effect on primary producers was channelled differently into heterotroph primary consumers depending on the inorganic nutrient availability. Under limiting conditions, bacteria and micro-heterotrophs benefited with inconsistent responses of larger heterotrophs. During nutrient replete periods, heterotrophs were in general negatively affected, although there was an increase of some mesozooplankton developmental stages (i.e. copepodites). We hypothesize that changes in phytoplankton size distribution and community composition could be responsible for these food web responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-01
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-12
    Description: Highlights • Calcification rates are stimulated by CO2 and HCO3− and inhibited by H+. • This novel substrate–inhibitor concept is tested with experimental data. • The concept enables us to reconcile conflicting results among laboratory studies. • We illustrate how this physiological concept can be included in ecological theory. • We apply the concept to discuss coccolithophore dispersal in the oceans. Abstract Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the “substrate–inhibitor concept” which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3−), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson’s niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans’ HCO3− and decrease its H+ concentrations in the far future (10–100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Chemical (Sr, Mg) and isotopic (δ18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from 10 basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement 〈46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater–basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46–6.22 mmol/mol) and Mg/Ca (1.12–2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca–Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: We investigated the halogen (Cl, F, Br, and I) chemistry of serpentinites that record progressive dehydration during subduction from shallow oceanic environments via increased pressure and temperature conditions to complete breakdown of antigorite. The aim is to evaluate the relevance of serpentinites for halogen recycling in subduction zones and for deep mantle recharge of these elements. The halogen compositions of the analyzed samples indicate input from seawater and sedimentary sources during initial serpentinization of either subducting lithospheric mantle during slab bending or forearc mantle by uprising slab fluids. During the first dehydration stage (antigorite + brucite → olivine + H2O), fluids with high Br/Cl and I/Cl ratios are released resulting in residual serpentinites with lower Br/Cl and I/Cl ratios. Veins associated with this event and with the final antigorite breakdown (antigorite → olivine + orthopyroxene + H2O) show higher halogen ratios compared to their adjacent wall rocks, and they are similar to those found in arc volcanoes (F/Cl and I/Cl between ca. 0.083–1.5, and ca. 0.00038–0.0013, respectively). All measured deserpentinization samples show a narrow range in δ37Cl values (between − 0.42‰ and + 0.92‰) overlapping the δ37Cl values of seafloor serpentinites and confirming that no significant Cl isotope fractionation occurs during subduction dehydration of serpentinites. Our findings document the conservative behavior of halogens during subduction. Mass balance constraints reveal that serpentinites strongly control the halogen chemistry of deep subduction zone fluids and that descent of rock residues after deserpentinization strongly affects the halogen budget of the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: We evaluate the potential of ophiolites as archives of paleoseawater and hydrothermal fluid compositions by analysing the chemical and isotopic composition of abiogenic carbonates, precipitated from fluids within the oceanic crust of the 91 Ma Troodos Ophiolite, Cyprus. Calculated variations in fluid Mg/Ca, Sr/Ca and Sr-87/ Sr-86 with temperature within the upper sections of the ophiolite are similar to those from drilled oceanic crust, and yield literature values for late Cretaceous seawater Mg/Ca, Sr/Ca and Sr-87/ Sr-86. This indicates that carbonates from ophiolites could be used to estimate the composition of ancient seawater at times before the age of the oldest preserved in-situ oceanic crust. Whereas most carbonates recovered from in-situ oceanic crust were precipitated at temperatures 〈 60 degrees C, abiogenic carbonates from the Troodos Ophiolite formed over a temperature range of 7 degrees C to 218 degrees C. These provide unique insights into the chemical and mineralogical processes that transform seawater into a high temperature hydrothermal fluid within the oceanic crust. We use 'hydrothermal variation diagrams' of Mg/Ca, Sr/Ca, Sr-87/ Sr-86 and delta(44)/Ca-40 versus calculated temperature (delta O-18) to trace this fluid evolution within the Troodos oceanic crust. We find that successive fluid-crust-interaction, the precipitation of Mg- and Ca-bearing minerals and the early formation of anhydrite (〉 44 degrees C) gradually transform Cretaceous seawater into a Troodos hydrothermal fluid. Comparison of the Troodos data with a global dataset of abiogenic carbonates from in-situ oceanic crust shows that the chemical pathways of low-temperature fluid evolution are similar for all Cretaceous sites. These different sites represent varied geotectonic settings (midocean ridge vs. suprasubduction zone), with different basement composition (basalt, basaltic andesite/boninite) and situated in different ocean basins (Atlantic, Pacific, Mediterranean [Tethys]). The similarity in the carbonate record indicates that these differences do not significantly influence seafloor weathering and hydrothermal alteration at low temperatures. However, abiogenic carbonates from younger oceanic crust differ from the Cretaceous trends and follow different fluid evolution pathways. This indicates, that temporal variations in the composition of seawater may control the nature and the extent of seafloor weathering and hydrothermal alteration at low temperatures. A thermodynamic model of fluid-crust interaction, in which modern and Cretaceous seawater are heated to 200 degrees C while an average Troodos basaltic andesite is successively added under otherwise identical conditions predicts that fluid evolution and alteration of the oceanic crust were different in the Cretaceous than they are today, and that initial seawater chemistry affects the nature and the extent of seafloor alteration up to moderate fluid temperatures. For example, twice the amount of carbonate formed during alteration of the oceanic crust in the Cretaceous compared to modern times, indicating that the flux of CO2 from the hydrosphere-atmosphere system into the oceanic crust was greater in the Cretaceous than it is nowadays, and that it probably varied throughout geologic time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14 degrees 45'N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca](sw)) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca](HydEnd)) and thereby adopts a delta Ca-44/40(HydEnd) of -0.95 +/- 0.07 parts per thousand relative to seawater (SW) and a Sr-87/Sr-86 isotope ratio of 0.7034(4). We demonstrate that delta Ca-44/40(HydEnd) is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a delta Ca-44/40 of -1.17 +/- 0.04 parts per thousand (SW) for the host-rocks in the reaction zone and -1.45 +/- 0.057 parts per thousand (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed delta Ca-44/40 for Bulk Earth of -0.92 +/- 0.187 parts per thousand (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust (Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic Calcium cycle. Geochim. Cosmochim. Acta 62,(10) 1691-1698: Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Delta(44/4C) Ca = -0.57 parts per thousand relative to their assumed parental solutions, Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average delta Ca-44/40 of -1.54 +/- 0.08 parts per thousand (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration. (C) 2008 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-30
    Description: The primary objectives of this study were to quantify the spreading of suspended sediment from underwater blasting and subsequent dredging of bedrock and to understand the physical processes governing the spreading of suspended sediment due to underwater blasting. The investigations were carried out in connection with the construction of a new quay at the existing harbour of Sisimiut, Greenland. Subsequent to the largest of a series of underwater blasts, the distribution of suspended sediment in the water column at and around the construction site was observed using a CTD (Conductivity, Temperature, Depth) equipped with a turbidity meter. The observations show that sediment was brought into suspension near the surface and at internal density gradients in the water column, where it became subject to prevailing flow conditions. The observations further show what was probably a turbidity current, flowing down the steeply sloping seabed away from the construction site. The spreading of sediment due to this turbidity current could not be assessed, but could have been considerable. Observations made using sediment traps over much of the period of construction show that the total spreading of sediment was roughly the same for blasting of bedrock and dredging of the blasted material and that much of the sediment that was brought into suspension settled near the construction site. Furthermore, these observations indicate that blasting leads to a wider spreading of sediment, but that dredging leads to a wider spreading of the organic part of the sediment. Almost all material less than 2 μm, including surficial clay minerals and much organic material, was transported away from the construction site and its vicinity, which could imply mobilization and export of pollutants. Environmental impacts of suspended sediment from underwater blasting, which could include coverage of the benthos or increased turbidity, can be managed by timing the blast favourably relative to currents, waves and stratification. It is argued that the environmental impact of blasting can be minimized by decreasing or maybe even increasing the spreading of sediment, depending on, e.g., the resilience of the flora and fauna and the surficial sediment and the pollution therein. Highlights • Sediment suspended near surface and internal density gradients in the water column. • Sediment transported by turbidity current down steeply sloping seabed. • Total spreading of sediment roughly the same for blasting and dredging. • Blasting leads to wider spreading of sediment. • Dredging leads to wider spreading of organic matter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...