ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (35)
  • Wiley-Blackwell  (35)
  • EDP Sciences
  • Public Library of Science
  • Wiley
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 8 (1966), S. 405-431 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 746-754 
    ISSN: 0006-3592
    Keywords: Lactococcus cremoris ; cell-recycle fermentor ; cross-flow filtration ; high cell concentration cultures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: High-cell concentration cultivation of Lactococcus cremoris, a homofermentative lactic acid producer, in a cell-recycle fermentor is described. Cross-flow filtration allowing continuous removal of the inhibitory metabollte, the influence of dilution rate on growth was investigated in total or partial cell-recycle cultures. The dependence of growth characteristics on operating conditions was identified and quantified using lactose as the carbon source. Growth kinetics could be described by both lactate removal efficiency and nutrient availability. Based on physiological observations, biomass and lactic acid productivities were predicted in partial cell-recycle cultures.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 858-860 
    ISSN: 0006-3592
    Keywords: lipase ; cellulase activity ; enzyme bioreactor ; triglyceride hydrolysis ; cellulose membrane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Polymeric membranes are increasingly used as supports for the immobilization of enzymes in bioreactors. One of the more common reactor types employed in lipase-catalyzed hydrolysis of oils, contains modified cellulose as a membrane material. We found that this type of material is readily attacked by cellulase present in several commercially available lipase preparations. This leads to membrane damage, reactor instability, and leakage. We conclude that cellulose membranes are not suitable as supports in bioreactors for the immobilizartion of these lipases. The development of alternative membranes is currently in progress. © 1992 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 13 (1971), S. 323-330 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The authors have investigated a special aspect of the transfer of oxygen: the aeration performance of small-scale suction-impellers in a suspension of activated sludge floes and a performance comparison with clear water. The principle of the impellers is, that in order to disperse air bubbles into the aforementioned liquids, all that we need do is a simple stirring. Due to the impellers the authors could not show a reduction of the oxygen transfer coefficient in the presence of sludge flocs. Former comparative studies of oxygen transfer, using a fixed orifice, did show a reduction in the presence of sludge flocs. Therefore, it seems probable that the effect of activated sludge flocs on the transfer coefficient is linked with the manner in which air is dispersed, i.e., depends on whether an orifice is fixed or moved. The experimental results allow presumption that by developing a high intensity of shear near the location where air bubbles are produced, we are able to minimize the effect of sludge flocs on the process of bubble formation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1723-1734 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value Scrit, the potentially useful hydrocarbon S* concentration is described by S* = Scrit/(1 + Scrit/S). A relationship was found between Scrit and the biomass concentration X. When X increased, Scrit decreased. The cell growth rate is related to a relation μ = μm[A(X/Scrit)(1 + Scrit/S) + 1]-1. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 23 (1981), S. 185-199 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The mixed cultures which were used were isolated from municipal sludge digesters, and the production of organic acids (acetic, propionic, butyric, etc.) from carbohydrates was tested. The behavior of the reference population (culture R) obtained directly from the sewage treatment plant, is compared to that obtained after three months in a plug-flow reactor (Gradostat fermentor) without pH control (culture A) and after six months with pH control (culture B). For culture B, the specific rate of acid production is related to the cell growth rate by (1/X)rp= 17 µ + 1.6 with a maximal acid concentration of 40 g/liter. The batch culture yields are improved from 0.36g/g for the initial culture (R) to 0.72 g/g for culture B after six months in continuous culture, and 0.8 g/g in plug-flow continuous culture. The productivity of organic acids reaches 1.7 g/liter·hr. It is suggested that the acidogenic fermentation, the first step of methanogenesis, is a potential process to produce acetic, propionic, and butyric acids.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 337-343 
    ISSN: 0006-3592
    Keywords: dielectrophoresis ; cells, separation of ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Dielectrophoresis is the movement of particles in non-uniform alternating and direct current (AC, DC) electric fields. When nonuniform electric fields are created between microelectrodes, cells will redistribute themselves around the electrodes, the force holding the cells in place dependig on the local electric field and on the electrical properties of the cells themselves and the suspending medium. Steric drag forces produced by a gentle fluid flow in the chamber can be used to separate cells by selectively lifting cells from potential energy wells produced by the electric field. The technique is demonstrated in the batch separation of bacteria, yeast cells, and plant cells. Continuous separation and extraction of two cell types can be achieved by repeated reversing of the fluid flow direction in phase with the switching on and off of the applied voltage, and the efficacy of the technique is demonstrated for viable and nonviable (heat-treated) yeast cells. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 271-276 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A kinetic model of ethanol fermentation conducted under a variety of conditions in a continuous four-stage reactor is proposed. The expressions for specific growth and product formation rates are: \documentclass{article}\pagestyle{empty}\begin{document}$$ \mu = \mu _0 {\rm exp( - }k_1 P){\rm (1 - }X/X_1) \\ \nu _P = \nu _0 {\rm exp( - }k_2 P){\rm (1 - }X/X_2) \\ $$\end{document} Parameters were identified by nonlinear programming and shown to fit data correctly for steady states of seven different experiments. The product inhibition constants were of 27 and 84 g/L, respectively. Secondary inhibitions were represented by the linear biomass term. The proposed model gave a better description of phenomena than one which only took ethanol inhibition into account. The same model also fitted batch fermentation data, with only some parameters altering significantly. The use of this model for on-line purposes is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 35 (1990), S. 201-206 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fermentation of glucose by a strain of Saccharomyces cerevisiae was studied in a continuous single-stage process with recycle of the cells via cross-flow micro-filtration membranes. Operating conditions were selected such that the culture was not carbon limited and inhibition by ethanol and cell death were minimized.Steady states were obtained for various biomass bleeding rates, i.e., various specific growth rates. From the experimental data, the stoichiometry of the simultaneous reactions, cell growth, ethanol production and maintenance were established using mass and degree of reduction balance relative to substrates (carbon source and oxygen) and products (biomass, ethanol, carbon dioxide etc.), and the growth parameters, yields, and maintenance cofficients were determined. It was shown that the oxygen consumption was not linked to the kinetics of the fermentation. The calculated growth constants were discussed and compared to the currently reported values.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1308-1317 
    ISSN: 0006-3592
    Keywords: Trichoderma reesei CL-847 ; steam explosion treatment ; saccharification ; inactivation ; cellulose ; hemicelluloses ; lignin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Effects of time, temperature, and pH during the steam explosion of poplar wood were studied with the aim of optimize both pentoses recovery and enzymatic hydrolysis efficiency. Steam explosion of acid impregnated wood chips allowed the recovery of 70% of potential xylose as monomers (217°C, 120 s) Enzymatic hydrolysis of pretreated fiber with Trichoderma reesei CL-847 cellulase system increased progressively with the severity of the steam treatment conditions. The best yield in term of glucose recovery after 24 h of enzymatic hydrolysis was 70% of potential glucose (225°C, 120 s). Deactivation by adsorption on lignin of Trichoderma reesei cellulases and inhibition of these enzymes by low-molecular-weight phenols and trihydroxybutyric acids were noticed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...