ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (2)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • 1
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Climate of the Past 5 (2009): 53-72, doi:10.5194/cp-5-53-2009
    Description: We present a new high-resolution marine pollen record from NW Iberian margin sediments (core MD03-2697) covering the interval between 340 000 and 270 000 years ago, a time period centred on Marine Isotope Stage (MIS) 9 and characterized by particular baseline climate states. This study enables the documentation of vegetation changes in the north-western Iberian Peninsula and therefore the terrestrial climatic variability at orbital and in particular at millennial scales during MIS 9, directly on a marine stratigraphy. Suborbital vegetation changes in NW Iberia in response to cool/cold events are detected throughout the studied interval even during MIS 9e ice volume minimum. However, they appear more frequent and of higher amplitude during the 30 000 years following the MIS 9e interglacial period and during the MIS 9a-8 transition, which correspond to intervals of an intermediate to high ice volume and mainly periods of ice growth. Each suborbital cold event detected in NW Iberia has a counterpart in the Southern Iberian margin SST record. High to moderate amplitude cold episodes detected on land and in the ocean appear to be related to changes in deep water circulation and probably to iceberg discharges at least during MIS 9d, the mid-MIS 9c cold event and MIS 9b. This work provides therefore additional evidence of pervasive millennial-scale climatic variability in the North Atlantic borderlands throughout past climatic cycles of the Late Pleistocene, regardless of glacial state. However, ice volume might have an indirect influence on the amplitude of the millennial climatic changes in Southern Europe.
    Description: This research was supported by IPEV (Institut Paul Emile Victor), PNEDC (Programme National d’Etude de la Dynamique du Climat), the Gary Comer Science and Education Foundation and the US National Science Foundation (OCE grants 8-4911100 and 8-256500).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Waelbroeck, C., Lougheed, B. C., Riveiros, N. V., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., Collins, J. A., Dennielou, B., Desprat, S., Dickson, A., Elliot, M., Farmer, C., Giraudeau, J., Gottschalk, J., Henderiks, J., Hughen, K., Jung, S., Knutz, P., Lebreiro, S., Lund, D. C., Lynch-Stieglitz, J., Malaize, B., Marchitto, T., Martinez-Mendez, G., Mollenhauer, G., Naughton, F., Nave, S., Nuernberg, D., Oppo, D., Peck, V., Peeters, F. J. C., Penaud, A., Portilho-Ramos, R. d. C., Repschlaeger, J., Roberts, J., Ruehlemann, C., Salgueiro, E., Goni, M. F. S., Schonfeld, J., Scussolini, P., Skinner, L. C., Skonieczny, C., Thornalley, D., Toucanne, S., Van Rooij, D., Vidal, L., Voelker, A. H. L., Wary, M., Weldeab, S., & Ziegler, M. Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data, 6, (2019): 165, doi:10.1038/s41597-019-0173-8.
    Description: Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
    Description: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013 Grant agreement n° 339108). New 14C dates for cores EW9209-1JPC and V29-202 were funded by NSF OCE grants to DWO. FN, ES and AV acknowledge FCT funding support through project UID/Multi/04326/2019. We thank T. Garlan and P. Guyomard for having given us access to cores from the Service Hydrographique et Océanographique de la Marine. We acknowledge N. Smialkowski for help with formatting the data into text files, and L. Mauclair, L. Leroy and G. Isguder for the picking of numerous foraminifer samples for radiocarbon dating. We are grateful to S. Obrochta, E. Cortijo, E. Michel, F. Bassinot, J.C. Duplessy, and L. Labeyrie for advice and fruitful discussions. This paper is LSCE contribution 6572.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...