ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-24
    Description: Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed and occasionally cut and fertilised grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N stocks over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m−2 a−1) and losses from leaching (5.3 g N m−2 a−1), N2 emissions (2.9 g N m−2 a−1), and NOx and NH3 volatilisation (3.9 g N m−2 a−1), while N2O emission was only 0.6 g N m−2 a−1. The efficiency of N use by animal products (meat and wool) averaged 9.9 % of total N input over only-grazed years (2004–2010). On average over 9 years (2002–2010), the balance of N fluxes suggested that 6.0 ± 5.9 g N m−2 a−1 (mean ± confidence interval at p 〉 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 a−1 over the 9 years. This sink strength was offset by carbon export from the field mainly as grass offtake for silage (48.9 g C m−2 a−1) and leaching (16.4 g C m−2 a−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation, were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 a−1. By contrast, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 a−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 a−1. Potential reasons for the discrepancy between these estimates are probably an underestimation of C losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq. m−2 yr−1 and was strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Estimated enteric fermentation from ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-16
    Description: The UK Acid Gases and Aerosol Monitoring Network (AGANet) was established in 1999 (12 sites, increased to 30 sites from 2006), to provide long-term national monitoring of acid gases (HNO3, SO2, HCl) and aerosol components (NO3−, SO42−, Cl−, Na+, Ca2+, Mg2+). An extension of a low-cost denuder-filter pack system (DELTA) that is used to measure NH3 and NH4+ in the UK National Ammonia Monitoring Network (NAMN) provides additional monthly speciated measurements for the AGANet. A comparison of the monthly DELTA measurement with averaged daily results from an annular denuder system showed close agreement, while the sum of HNO3 and NO3− and the sum of NH3 and NH4+ from the DELTA are also consistent with previous filter pack determination of total inorganic nitrogen and total inorganic ammonium, respectively. With the exception of SO2 and SO42−, the AGANet provides, for the first time, the UK concentration fields and seasonal cycles for each of the other measured species. The largest concentrations of HNO3, SO2, and aerosol NO3− and SO42− are found in southern and eastern England and smallest in western Scotland and Northern Ireland, whereas HCl are highest in south-eastern, south-western, and central England, that may be attributed to dual contribution from anthropogenic (coal combustion) and marine sources (reaction of sea salt with acid gases to form HCl). Na+ and Cl− are spatially correlated, with largest concentrations at coastal sites, reflecting a contribution from sea salt. Temporally, peak concentrations in HNO3 occurred in late winter and early spring attributed to photochemical processes. NO3− and SO42− have a spring maxima that coincides with the peak in concentrations of NH3 and NH4+, and are therefore likely attributable to formation of NH4NO3 and (NH4)2SO4 from reaction with higher concentrations of NH3 in spring. By contrast, peak concentrations of SO2, Na+, and Cl− during winter are consistent with combustion sources for SO2 and marine sources in winter for sea salt aerosol. Key pollutant events were captured by the AGANet. In 2003, a spring episode with elevated concentrations of HNO3 and NO3− was driven by meteorology and transboundary transport of NH4NO3 from Europe. A second, but smaller episode occurred in September 2014, with elevated concentrations of SO2, HNO3, SO42−, NO3−, and NH4+ that was shown to be from the Icelandic Holuhraun volcanic eruptions. Since 1999, AGANet has shown substantial decrease in SO2 concentrations relative to HNO3 and NH3, consistent with estimated decline in UK emissions. At the same time, large reductions and changes in the aerosol components provide evidence of a shift in the particulate phase from (NH4)2SO4 to NH4NO3. The potential for NH4NO3 to release NH3 and HNO3 in warm weather, together with the surfeit of NH3 also means that a larger fraction of the reduced and oxidized N is remaining in the gas phase as NH3 and HNO3 as indicated by the increasing trend in ratios of NH3 : NH4+ and HNO3 : NO3− over the 16-year period. Due to different removal rates of the component species by wet and dry deposition, this change is expected to affect spatial patterns of pollutant deposition with consequences for sensitive habitats with exceedance of critical loads of acidity and eutrophication. The changes are also relevant for human health effects assessment, particularly in urban areas as NH4NO3 constitutes a significant fraction of fine particulate matter ( 
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-30
    Description: Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O3) from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June, 2008. Previous work has focused on the importance of long-range transport of O3 to North America air quality in springtime. However during this summer experiment the long-range transport of O3 is also shown to be important. Simulated and observed O3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the O3 profiles over the oceans, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O3 air-masses (O3〉60 ppb) at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O3 20–30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC) needed in air quality simulations. The importance of the LBC on O3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to provide information on the three-dimensional nature of pollutant distributions, in order to improve our capability to predict pollution levels and to better quantify the influence of these Asian inflows on the US west coast air quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-04
    Description: Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3–4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1–4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10–70% of SO2 and 20–60% fine SO4 on-shore and over the most terrestrial areas, with contributions decreasing with in-land distance from the coast. Maritime emissions also modify the photochemical environment, shifting O3 production over coastal SC to more VOC-limited conditions. These suggest an important role for shipping emission controls in reducing fine particle and O3 concentrations in SC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-21
    Description: Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001–2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-05-22
    Description: The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF – change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is −3.3±0.47, −14±2.6, −6.4±2.1 Wm−2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-03
    Description: Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated with sea salt particles during 19% of the time, indicating the presence of biogenic particles in addition to the MSA-OA and AA-OA factors.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-23
    Description: Inferential models have long been used to determine pollutant dry deposition to ecosystems from measurements of air concentrations and as part of national and regional atmospheric chemistry and transport models, and yet models still suffer very large uncertainties. An inferential network of 55 sites throughout Europe for atmospheric reactive nitrogen (Nr) was established in 2007, providing ambient concentrations of gaseous NH3, NO2, HNO3 and HONO and aerosol NH4+ and NO3− as part of the NitroEurope Integrated Project. Network results providing modelled inorganic Nr dry deposition to the 55 monitoring sites are presented, using four existing dry deposition routines, revealing inter-model differences and providing ensemble average deposition estimates. Dry deposition is generally largest over forests in regions with large ambient NH3 concentrations, exceeding 30–40 kg N ha−1 yr−1 over parts of the Netherlands and Belgium, while some remote forests in Scandinavia receive less than 2 kg N ha−1 yr−1. Turbulent Nr deposition to short vegetation ecosystems is generally smaller than to forests due to reduced turbulent exchange, but also because NH3 inputs to fertilised, agricultural systems are limited by the presence of a substantial NH3 source in the vegetation, leading to periods of emission as well as deposition. Differences between models reach a factor 2–3 and are often greater than differences between monitoring sites. For soluble Nr gases such as NH3 and HNO3, the non-stomatal pathways are responsible for most of the annual uptake over many surfaces, especially the non-agricultural land uses, but parameterisations of the sink strength vary considerably among models. For aerosol NH4+ and NO3− discrepancies between theoretical models and field flux measurements lead to much uncertainty in dry deposition rates for fine particles (0.1–0.5 μm). The validation of inferential models at the ecosystem scale is best achieved by comparison with direct long-term micrometeorological Nr flux measurements, but too few such datasets are available, especially for HNO3 and aerosol NH4+ and NO3−.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-04
    Description: Base cations exert a large impact on various geochemical and geophysical processes both in the atmosphere and at the Earth surface. One of the essential roles of these compounds is impact on surface pH causing an increase in alkalinity and neutralizing the effects of acidity generated by sulphur and nitrogen deposition. During recent years anthropogenic emissions of base cations in the UK have decreased substantially, by about 70%, 78%, 75% and 48% for Na+, Mg2+, Ca2+ and K+, respectively, over the period 1990–2006. For the island regions, such as the UK, the main source of base cation particles is the aerosol produced from the sea surface. Here, the sea salt aerosol (SSA) emissions are calculated with parameterisations proposed by Mårtensson et al. (2003) for ultra fine particles, Monahan et al. (1986) for fine particles and Smith and Harisson (1998) for coarse particles continuously with a 0.1 μm size step using WRF-modelled wind speed data at a 5 km × 5 km grid square resolution with a 3 h time step for two selected years 2003 and 2006. SSA production has been converted into base cation emissions, with the assumption that the chemical composition of the particle emitted from the sea surface is equal to the chemical composition of sea water, and used as input data in the Fine Resolution Atmospheric Multi-pollutant Exchange Model (FRAME). FRAME model annual mean concentrations and total wet deposition at a 5 km × 5 km grid resolution, are compared with concentrations in air and wet deposition from the National Monitoring Network and measurements based estimates of UK deposition budget. The correlation coefficient for wet deposition achieves high values (R = 0.8) for Na+ and Mg2+, whereas for Ca2+ the correlation is poor (R 〈 0.3). Base cation concentrations are also represented well, with some overestimations on the west coast and underestimations in the centre of the land.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-08
    Description: Controlled bench scale pulverized coal combustion studies were performed, demonstrating that inorganic particles play a critical role as carriers of organic species. Two commonly-used aerosol mass spectrometry techniques were applied to characterize fine particle formation during coal combustion. It was found that the organic species in coal combustion aerosols have mass spectra similar to those generated by biomass combustion. Ambient measurements in Shanghai, China confirm the presence of these species in approximately 29–38% of the sampled particles. With the absence of major biomass sources in the Shanghai area, it is suggested that coal combustion may be the main source of these particles. This work indicates there is a significant potential for incorrect apportionment of coal combustion particles to biomass burning sources using widely adopted mass spectrometry techniques.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...