ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-21
    Description: The characteristics of urban dust aerosols and the contributions of their natural and anthropogenic sources are of scientific interest as well as being of substantial sociopolitical and economic concern. Here we present a comprehensive study of dust flux, magnetic parameters, magnetic particulate morphology, and elemental compositions of atmospheric dustfall originating from natural dust sources in East Asia and local anthropogenic sources in Xi'an, China. The results reveal a significant inverse relationship between seasonal variations of dust flux and magnetic susceptibility (χ). By comparing dust flux and χ records, the relative contributions of dust from local anthropogenic sources are estimated. Analyses using scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) indicate that magnetic particulate from different sources has distinct morphological and elemental characteristics. Detrital magnetic particles originating from natural sources are characterized by relatively smooth surfaces with Fe and O as the major elements and a minor contribution from Ti. The anthropogenic particles have angular, spherical, aggregate, and porous shapes with distinctive contributions from marker elements, including S, Cr, Cu, Zn, Ni, Mn, and Ca. Our results demonstrate that this multidisciplinary approach is effective in distinguishing dust particles derived from distant natural sources and local anthropogenic sources and for the quantitative assessment of contributions from the two end-members.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-18
    Description: The characteristics of urban dust aerosols and the contributions of their natural and anthropogenic sources are of scientific interest as well as being of substantial sociopolitical and economic concern. Here we present the results of a comprehensive study of dust flux and magnetic signatures, including magnetic susceptibility (χ) and the morphology and elemental composition of magnetic particulates, of atmospheric dustfall originating from natural dust sources in East Asia and local anthropogenic sources in Xi'an, China. The results reveal a significant inverse relationship, on a seasonal basis, between variations in dust flux and χ. By comparing χ records of desert surface sediments and local polluted dust, the relative contributions of natural and anthropogenic sources can be estimated for the urban atmospheric dustfall. Analysis using Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS) indicates that magnetic particulates from different sources have distinctive morphological and elemental characteristics. Detrital magnetic particles originating from natural sources are characterized by relatively smooth surfaces with Fe and O as the major elements and a minor contribution from Ti. The anthropogenic particles have angular, spherule, aggregate, and porous shapes with distinctive contributions from marker elements, including S, Cr, Cu, Zn, Ni, Mn and Ca. Our results demonstrate that this multidisciplinary approach is effective in distinguishing dust derived from distant natural sources and local anthropogenic sources, and for quantitative assessment of the contributions of the two end-members.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-14
    Description: Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb∕Sr and Zr∕Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asian summer monsoon (EASM) and the East Asian winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened at the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensities were relatively weak during the Middle Holocene, indicating a mid-Holocene climatic optimum. Rb∕Sr and Zr∕Rb exhibit an antiphase relationship between the summer and winter monsoon changes on a centennial timescale during 16–1 ka. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on a centennial timescale in the Early Holocene. During the Late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-01
    Description: The Weihe Basin, enclosed by the Chinese Loess Plateau to the north and the Qinling Mountains to the south, is an outstanding, world-class continental site for obtaining high-resolution multi-proxy records that reflect environmental changes spanning most of the Cenozoic. Previous geophysical and sedimentary studies indicate that the basin hosts 6000–8000 m thick fluvial–lacustrine sedimentary successions spanning the Eocene to Holocene. This sedimentary record provides an excellent and unique archive to decipher long-term tectonic–climate interactions related to the uplift of the Tibetan Plateau, the onset/evolution of the Asian monsoon, and the development of the biogeography of East Asia. Owing to its location at the interface of the opposing westerly and Asian monsoon circulation systems, the Weihe Basin also holds enormous promise for providing a record of changes in these circulation systems in response to very different boundary conditions since the Eocene. To develop an international scientific drilling programme in the Weihe Basin, the Institute of Earth Environment, Chinese Academy of Sciences, organized a dedicated workshop with 55 participants from eight countries. The workshop was held in Xi'an, China, from 15 to 18 October 2019. Workshop participants conceived the key scientific objectives of the envisaged Weihe Basin Drilling Project (WBDP) and discussed technical and logistical aspects as well as the scope of the scientific collaboration in preparation for a full drilling proposal for submission to the International Continental Scientific Drilling Program (ICDP). Workshop participants mutually agreed to design a two-phase scientific drilling programme that will in a first phase target the upper 3000 m and in a second phase the entire up to 7500 m thick sedimentary infill of the basin. For the purpose of the 7500 m deep borehole, the world's only drill rig for ultra-deep scientific drilling on land, Crust 1, which previously recovered the entire continental Cretaceous sediments in the Songliao Basin, will be deployed in the WBDP.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...