ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-16
    Description: Ambrym volcano (Vanuatu, Southwest Pacific) is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical processing and to assess the impact of Ambrym on atmospheric chemistry at local and regional scales. We focus on an episode of extreme passive degassing that occurred in early 2005 and for which airborne DOAS measurements of SO2 and BrO columns, in the near downwind plume, have been reported. The model was developed to include reactive halogen chemistry and a volcanic emission source specific to this extreme degassing event. SO2 simulated columns show very good quantitative agreement with the DOAS observations as well as with OMI data, suggesting that the plume direction as well as its dilution are well represented. Simulations are presented with and without a high-temperature initialization that includes radicals formed by high temperature partial oxidation of magmatic gases by ambient air. When included high-temperature chemistry initialization, the model is able to capture the observed BrO/SO2 trend with distance from the vent in the near downwind plume. However, the maximum of BrO columns enhancement is still underestimated by a factor 3. The model identifies total in-plume depletion of ozone (15 ppbv) as a limiting factor to the partitioning of reactive bromine into BrO, of particular importance in this very strong plume at low background ozone conditions. Impacts of Ambrym in the Southwest Pacific region were also evaluated. As the plume disperses regionally, reactive halogen chemistry continues on sulfate aerosols produced by SO2 oxidation and promotes BrCl formation. Ozone depletion is weaker than at local scale but still between 10 to 40 %, in an extensive region few thousands of kilometres from Ambrym. The model also predicts transport of bromine to upper troposphere and stratosphere associated with convection events. In the upper troposphere, HBr is re-formed from Br and HO2. The model confirms the potential for volcanic emissions to influence the oxidizing power of the atmosphere: methane lifetime (calculated with respect to OH and Cl) is overall increased in the model due to the volcanic emissions. Reactive halogen chemistry is responsible for about 62 % of the methane lifetime increase with respect to OH, with depletion of OH by SO2 oxidation responsible for the remainder (38 %). Cl radicals produced in the plume counteract 41 % of the methane lifetime lengthening due to OH depletion. The reactive halogen chemistry in the plume is also responsible for an increase of 36 % of the SO2 lifetime with respect to oxidation by OH. This study confirms the strong influence of Ambrym emissions during the extreme degassing event of early 2005 on the composition of the atmosphere at the local and regional scales. It also stresses the importance of considering reactive halogen chemistry when assessing the impact of volcanic emissions on climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-14
    Description: Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5–12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean–atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-03
    Description: Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO2 ratios). Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO2 at Etna including the initial rise and subsequent plateau. Through suites of model simulations we also investigate the influences of volcanic aerosol loading, bromine emission, and plume-air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br2, BrO, BrONO2, BrCl, HOBr. Formation of BrNO2 is also discussed. We predict a new evolution of Br-speciation in the plume, with BrO, Br2, Br and HBr as the main plume species in the near downwind plume whilst BrO, and HOBr are present in significant quantities further downwind (where BrONO2 and BrCl also make up a minor fraction). The initial rise in BrO / SO2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO2 near-downwind (〈 6 km) at the relatively high loadings considered. The subsequent decline in BrO / SO2 occurs as entrainment of oxidants HO2 and NO2 promotes net formation of HOBr and BrONO2, whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO2 in the (〉 6 km) downwind plume. Simulations assuming low/medium and high Etna bromine emissions scenarios show the bromine emission has a greater influence on BrO / SO2 further downwind and a modest impact near downwind, and show either complete or partial conversion of HBr into reactive bromine, respectively, yielding BrO contents that reach up to ∼50% or ∼20% of total bromine (over a timescale of a few 10's of minutes). Plume-air mixing (which in our model with fixed plume dimensions is inversely related to the volcanic emission flux) non-linearly impacts the downwind BrO / SO2. A slower rate of plume-air mixing (or greater volcanic emission flux) leads to lower BrO / SO2 ratios near downwind, but also delays the subsequent decline in BrO / SO2, thus yields higher BrO / SO2 ratios further downwind. We highlight the important role of plume chemistry models for the interpretation of observed changes in BrO / SO2 during/prior to volcanic eruptions, as well as for quantifying volcanic plume impacts on atmospheric chemistry. Simulated plume impacts include ozone, HOx and NOx depletion, the latter converted into HNO3. Partial recovery of ozone concentrations occurs with distance downwind (as BrO concentrations decline), although cumulative ozone loss is ongoing over the 3 h simulations. We suggest plume BrNO2 may be less prevalent than previous model predictions. We highlight additional reactions for BrNO2 (and alternative pathways via BrONO) which likely reduce in-plume BrNO2 prevalence. We also highlight uncertainty in volcanic NOx emissions that might be lower than previously assumed (i.e., equilibrium NOx), due to the slow rate of N2 oxidation. The atmospheric : magmatic gas ratio, VA : VM, in equilibrium model representations of the near vent plume is presently poorly defined. Using a revised equilibrium model methodology, lower VA : VM become suitable (e.g. VA : VM = 98 : 2, 95 : 5), which also yield a lower estimate for volcanic NOx, although uncertainties to such equilibrium model representations of near-vent plume chemistry and especially NOx formation are emphasized.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-27
    Description: The reactive uptake of HOBr onto halogen-rich aerosols promotes conversion of Br−(aq) into gaseous reactive bromine (incl. BrO) with impacts on tropospheric oxidants and mercury deposition. However, experimental data quantifying HOBr reactive uptake on tropospheric aerosols is limited, and reported values vary in magnitude. This study re-examines the reaction kinetics of HOBr across a range of aerosol acidity conditions, focusing on chemistry within the marine boundary layer and volcanic plumes. We highlight that the termolecular approach to HOBr reaction kinetics, used in numerical model studies to date, is strictly only valid over a specific pH range. Here we re-evaluate the reaction kinetics of HOBr according to the general acid assisted mechanism. The rate of reaction of HOBr with halide ions becomes independent of pH at high acidity yielding an acid-independent second-order rate constant, kII. The limit of acid-saturation is poorly constrained by available experimental data, although a reported estimate for HOBr+ Br−(aq)+H+(aq), is kIIsat = 108–109 M−1 s−1, at pH ≲ 1. By consideration of halide nucleophilic strength and re-evaluation of reported uptake coefficient data on H2SO4-acidified sea-salt aerosol, we suggest the reaction of HOBr(aq) + Cl−(aq)+H+(aq) may saturate to become acid-independent at pH ≤ 6, with kIIsat ~104 M−1 s−1. This rate constant is multiple orders of magnitude lower (a factor of 103 at pH = 3 and a factor of 106 at pH = 0) than that currently assumed in numerical models of tropospheric BrO chemistry, which are based on the termolecular approach. Reactive uptake coefficients, γHOBr, were calculated as a function of composition using the revised HOBr kinetics, with kI = kII · [X−(aq)], and X = Br or Cl. γHOBr initially increases with acidity but subsequently declines with increasing H2SO4-acidification of sea-salt aerosol. The HOBr+Cl− uptake coefficient declines due to acid-displacement of HCl(g), reducing [Cl−(aq)]. The HOBr+Br− uptake coefficient also declines at very high H2SO4:Na ratios due to dilution of [Br−(aq)]. The greatest reductions in HOBr uptake coefficients occur for small particle sizes, across which the probability of diffusion of HOBr(aq) without reaction is highest. Our new uptake calculations are consistent with all reported experimental data thus resolve previously reported discrepancies within a unified uptake coefficient framework. The following implications for BrO chemistry in the marine boundary layer are highlighted: we confirm HOBr reactive uptake is rapid on moderately acidified supramicron aerosol, but predict very low HOBr reactive uptake coefficients on the highly-acidified submicron marine aerosol fraction. This re-evaluation is in contrast to the high HOBr reactive uptake previously assumed to occur on all acidified sea-salt aerosol. Instead, our uptake evaluation indicates that particle bromide in the submicron aerosol fraction is not easily depleted by HOBr uptake, and furthermore can be augmented by deposition of gas-phase bromine released from the supramicron particles. We present this mechanism as a first explanation for the observed (but previously unexplained) Br-enhancement (relative to Na) in submicron particles in the marine environment. Further, we find HOBr reactive uptake on acidified sea-salt aerosol is driven by reaction of HOBr+Br− rather than HOBr+Cl− (γHOBr + Br− 〉 γHOBr−+Cl−) once HCl-displacement has occurred. Thus, the reduction in γHOBr + Br− as BrO chemistry progresses (noting γHOBr + Br− is a function of aerosol Br−(aq) concentration which declines as aerosol bromide is converted into gaseous-phase reactive bromine) will have greater importance in slowing overall HOBr reactive uptake as BrO chemistry evolves than has been assumed previously. We suggest both the above factors may explain the reported overprediction of BrO cycling in the marine environment by numerical models to date. First predictions of HOBr reactive uptake on sulphate particles in tropospheric volcanic plumes are presented. High (accommodation limited) HOBr+Br− uptake coefficient in concentrated (〉1 ppmv SO2) plume environments supports rapid BrO formation under all conditions. However, the HOBr + Cl− uptake coefficient exhibits an inverse temperature trend which becomes more pronounced as the plume disperses. The HOBr+Br− coefficient also declines with temperature in dilute (~ppbv SO2) plumes. We infer that BrO chemistry can readily be sustained in downwind plumes entering the mid- to-upper troposphere, e.g. either from continuous degassing from elevated volcano summits (e.g. Etna, 3.3 km a.s.l.) or episodic eruptions (e.g. Eyjafjallajökull, Iceland). However, low HOBr reactive uptake coefficients may limit sustained BrO cycling in dilute plumes in the lower troposphere. In summary, our revised HOBr kinetics that includes acid-saturation indicates that current numerical models of BrO chemistry in the troposphere substantially overestimate the rate of HOBr reactive uptake on acidic halogen rich-particles, with implications for BrO chemistry in both the marine environment and volcanic plumes, as well as the wider troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-04-20
    Description: Since the first detection of bromine monoxide in volcanic plumes attention has focused on the atmospheric synthesis and impact of volcanogenic reactive halogens. We report here new measurements of BrO in the volcanic plume emitted from Kīlauea volcano – the first time reactive halogens have been observed in emissions from a hotspot volcano. Observations were carried out by ground-based Differential Optical Absorption Spectroscopy in 2007 and 2008 at Pu'u'O'o crater, and at the 2008 magmatic vent that opened within Halema'uma'u crater. BrO was readily detected in the Halema'uma'u plume (average column amount of 3×1015 molec cm−2) and its abundance was strongly correlated with that of SO2. However, anticorrelation between NO2 and SO2 (and BrO) abundances in the same plume strongly suggest an active role of NOx in reactive halogen chemistry. The calculated SO2/BrO molar ratio of ~1600 is comparable to observations at other volcanoes, although the BrO mixing ratio is roughly double that observed elsewhere. While BrO was not observed in the Pu'u'O'o plume this was probably merely a result of the detection limit of our measurements and based on understanding of the Summit and East Rift magmatic system we expect reactive halogens to be formed also in the Pu'u'O'o emissions. If this is correct then based on the long term SO2 flux from Pu'u'O'o we calculate that Kīlauea emits ~480 Mg yr−1 of reactive bromine and may thus represent an important source to the tropical Pacific troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-28
    Description: Volcanoes are a known source of halogens to the atmosphere. HBr volcanic emissions lead rapidly to the formation of BrO within volcanic plumes as shown by recent work based on observations and models. BrO, having a longer residence time in the atmosphere than HBr, is expected to have a significant impact on tropospheric chemistry, at least at the local and regional scales. The objective of this paper is to prepare a framework that will allow 3-D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. This work is based on a 1-D configuration of the chemistry transport model MOCAGE whose low computational cost allows us to perform a large set of sensitivity studies. This paper studies the Etna eruption on the 10 May 2008 that took place just before night time. Adaptations are made to MOCAGE to be able to produce the chemistry occurring within the volcanic plume. A simple sub-grid scale parameterization of the volcanic plume is implemented and tested. The use of this parameterization in a 0.5° × 0.5° configuration (typical regional resolution) has an influence on the partitioning between the various bromine compounds both during the eruption period and also during the night period immediately afterwards. During the day after the eruption, simulations both with and without parameterizations give very similar results that are consistent with the tropospheric column of BrO and SO2 in the volcanic plume derived from GOME-2 observations. Tests have been performed to evaluate the sensitivity of the results to the mixing between ambient air and the magmatic air at very high temperature at the crater vent that modifies the composition of the emission, and in particular the sulphate aerosol content that is key compound in the BrO production. Simulations show that the plume chemistry is not very sensitive to the assumptions used for the mixing parameter (relative quantity of ambient air mixed with magmatic air in the mixture) that is not well known. This is because there is no large change in the compounds limiting/favouring the BrO production in the plume. The impact of the model grid resolution is also tested in view of future 3-D-simulations at the global scale. A dilution of the emitted gases and aerosols is observed when using the typical global resolution (2°) as compared to a typical regional resolution (0.5°), as expected. Taking this into account, the results of the 2° resolution simulations are consistent with the GOME-2 observations. In general the simulations at 2° resolution are less efficient at producing BrO after the emission both with and without the subgrid-scale parameterization. The differences are mainly due to an interaction between concentration effects than stem from using a reduced volume in the 0.5° resolution combined with second order rate kinetics. The last series of tests were on the mean radius assumed for the sulphate aerosols that indirectly impacts the production of BrO by heterogeneous reactions. The simulations show that the BrO production is sensitive to this parameter with a stronger production when smaller aerosols are assumed. These results will be used to guide the implementation of volcanic halogen emissions in the 3-D configuration of MOCAGE.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-23
    Description: The reactive uptake of HOBr onto halogen-rich aerosols promotes conversion of Br−(aq) into gaseous reactive bromine (incl. BrO) with impacts on tropospheric oxidants and mercury deposition. However, experimental data quantifying HOBr reactive uptake on tropospheric aerosols is limited, and reported values vary in magnitude. This study introduces a new evaluation of HOBr reactive uptake coefficients in the context of the general acid-assisted mechanism. We emphasise that the termolecular kinetic approach assumed in numerical model studies of tropospheric reactive bromine chemistry to date is strictly only valid for a specific pH range and, according to the general acid-assisted mechanism for HOBr, the reaction kinetics becomes bimolecular and independent of pH at high acidity. This study reconciles for the first time the different reactive uptake coefficients reported from laboratory experiments. The re-evaluation confirms HOBr reactive uptake is rapid on moderately acidified sea-salt aerosol (and slow on alkaline aerosol), but predicts very low reactive uptake coefficients on highly acidified submicron particles. This is due to acid-saturated kinetics combined with low halide concentrations induced by both acid-displacement reactions and the dilution effects of H2SO4(aq). A mechanism is thereby proposed for reported Br enhancement (relative to Na) in H2SO4-rich submicron particles in the marine environment. Further, the fact that HOBr reactive uptake on H2SO4-acidified supra-micron particles is driven by HOBr+Br− (rather than HOBr+Cl−) indicates self-limitation via decreasing γHOBr once aerosol Br- is converted into reactive bromine. First predictions of HOBr reactive uptake on sulfate particles in halogen-rich volcanic plumes are also presented. High (accommodation limited) HOBr+Br- uptake coefficient in concentrated (〉 1 μmol mol−1 SO2) plume environments supports potential for rapid BrO formation in plumes throughout the troposphere. However, reduced HOBr reactive uptake may reduce the rate of BrO cycling in dilute plumes in the lower troposphere. In summary, our re-evaluation of HOBr kinetics provides a new framework for the interpretation of experimental data and suggests that the reactive uptake of HOBr on H2SO4-acidified particles is substantially overestimated in current numerical models of BrO chemistry in the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-23
    Description: Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest in order to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO2 ratios). Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO2 at Etna including the initial rise and subsequent plateau. Suites of model simulations also investigate the influences of volcanic aerosol loading, bromine emission, and plume–air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br2, BrO, BrONO2, BrCl, HOBr. We predict a new evolution of Br speciation in the plume. BrO, Br2, Br and HBr are the main plume species near downwind whilst BrO and HOBr are present further downwind (where BrONO2 and BrCl also make up a minor fraction). BrNO2 is predicted to be only a relatively minor plume component. The initial rise in BrO / SO2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO2 near-downwind (〈 ~6 km, ~10 min) at the relatively high loadings considered. The subsequent decline in BrO / SO2 occurs as entrainment of oxidants HO2 and NO2 promotes net formation of HOBr and BrONO2, whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO2 in the (〉 6 km) downwind plume. Simulations assuming low/medium and high Etna bromine emissions scenarios show that the bromine emission has a greater influence on BrO / SO2 further downwind and a modest impact near downwind, and show either complete or partial conversion of HBr into reactive bromine, respectively, yielding BrO contents that reach up to ~50 or ~20% of total bromine (over a timescale of a few 10 s of minutes). Plume–air mixing non-linearly impacts the downwind BrO / SO2, as shown by simulations with varying plume dispersion, wind speed and volcanic emission flux. Greater volcanic emission flux leads to lower BrO / SO2 ratios near downwind, but also delays the subsequent decline in BrO / SO2, and thus yields higher BrO / SO2 ratios further downwind. We highlight the important role of plume chemistry models for the interpretation of observed changes in BrO / SO2 during/prior to volcanic eruptions, as well as for quantifying volcanic plume impacts on atmospheric chemistry. Simulated plume impacts include ozone, HOx and NOx depletion, the latter converted into HNO3. Partial recovery of ozone occurs with distance downwind, although cumulative ozone loss is ongoing over the 3 h simulations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...