ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-18
    Description: Water vapor is an important constituent of the atmosphere. Because of its abundance it plays an important role for the radiation budget of the atmosphere and has major influence on weather and climate. In this work the integrated water vapor (IWV) measurements derived from the measurements of two satellite sensors, SCIAMACHY and AMSU-B, and two ground-based sensors, a Fourier-transform spectrometer (FTIR) and an O3 microwave ozone sensor (RAM), are compared to radio-sonde measurements in Ny Ålesund, 79° N. All four remote sensors exploit different principles and work in different wavelength regions. Combined they deliver a comprehensive picture of the IWV above Ny Ålesund. The ground-based FTIR reproduces the radio-sonde measurements very well and also shows a high correlation and very little scatter of about 10%. The other remote sensing instruments show a good correlation with the coincident radio-sonde measurements but show high scatter of about 20% (standard deviation). The ground-based RAM performs similar to the satellite instruments, which is somewhat surprising, because measuring IWV is only a by-product for this sensor. The RAM sensor records a measurement every hour and is therefore suited to observe the diurnal variation. As measured by the RAM and FTIR the variance within 4 h is often in excess of 50% (minimum – maximum of the measured IWV). This large variance in the integrated water vapor renders the comparison of different sensors a difficult task. The derived variance of the instruments when compared to radio-sonde measurements can be explained by the high natural variability of IWV.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-08
    Description: The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) assume an ideal ILS (Instrumental line shape) in spectra retrieval and insert an attenuator or select a smaller entrance aperture to take some intensities away if incident radiation is too strong. These processes may alter the alignment of a high resolution FTIR (Fourier transform infrared) spectrometer and may result in biases due to ILS drift. In this paper, we first investigated the sensitivity of ILS monitoring with respect to various typical optical attenuators for ground-based high resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted in this analysis via the insertion of five different attenuators before and behind the interferometer. We compared the HCl profile retrievals using an ideal ILS with those using an actual measured ILS. The results showed that the total column amounts were under-estimated by about 0.4 % if the ME (modulation efficiency) amplitude deviates by about –3.5 %. Furthermore, the retrieval errors increased and the obvious profile deviations are shown in a height range with a high retrieval sensitivity. ILSs deduced from all scenarios of lamp cell measurements were compared, and were further used to derive the HCl profile from the same spectrum. As a result, the disturbances to the ILS of a high resolution FTIR spectrometer with respect to inserting different attenuators before and behind the interferometer are quantified. The resulting ILS errors propagation into gas retrievals were also analyzed. In conclusion, the alignment of the optical parts before the interferometer is more critical than those behind the interferometer, and the entrance aperture (the focus of the entrance parabolic/spherical mirror) exhibited the most critical influence. An optimum method to adapt the incident intensity of a detector was finally deduced.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-09
    Description: This paper presents a validation study of SCIAMACHY CO total column measurements from the IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2×1018 molecules/cm2 (~10%) indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8×8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with a previously reported Southern Hemisphere bias based on comparisons with MOPITT CO and is currently under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based measurements available for the validation of the 2003–2007 SCIAMACHY CO columns is sub-optimal for validation purposes, and that the recent and ongoing expansion of the ground-based network by carefully selecting new locations may be very beneficial for SCIAMACHY CO and other satellite trace gas measurements validation efforts.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-22
    Description: This manuscript introduces the OZORAM ground based millimeter wave radiometer. The instrument is deployed to the high Arctic (79° N, 12° E) for measurements of O3 in the upper stratosphere and lower mesosphere. The discussion covers measurements taken since late 2006. To investigate instrumental biases, the results from September 2008 till spring 2009 are compared to O3 profiles derived from measurements of two instruments onboard polar orbiting satellites, MLS onboard EOS-AURA and SABER onboard TIMED. The agreement is within 20% in the stratosphere and 40% in the mesosphere. The deviations show strong systematic and oscillating features, for which the error discussion of the ground based instrument/measurement gives possible explanations. Nonetheless, expected features like the diurnal cycle and O3 enhancements due to stratospheric warmings are readily observed, which could not originally be taken for granted given the large deviation from the satellite data. The nature of the oscillatory deviation is further studied. This study points to a systematic error in the radiative transfer modeling caused by imperfect spectroscopic data.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-09
    Description: Ozone profiles retrieved from limb scattering measurements of the SCIAMACHY instrument based on the satellite ENVISAT are compared to ground-based low altitude resolution remote sensors. All profiles are retrieved using optimal estimation. Following the work of Rodgers and Connor (2003) the retrievals of the ground-based instruments are simulated using the SCIAMACHY retrieval. The SCIAMACHY results and the results of the ground-based microwave radiometer in Bremen and Ny Ålesund agree within the expected covariance of the intercomparison.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-09
    Description: SCIAMACHY limb scatter radiance measurements at selected wavelengths in the HARTLEY bands have been used to retrieve ozone profiles in the upper stratosphere and lower mesosphere. Comparisons with profiles measured by a ground based radiometer in Norway, MIPAS on board ENVISAT, HALOE on UARS and MLS on AURA indicate an agreement within 15% between 40 and 55 km and show that the retrieval provides reliable ozone profiles at these altitudes. Above 55 km, an increasing overestimation is observed. Beside the profile comparisons, further retrieval features of the current retrieval (version 1.26) are described.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-03
    Description: Water vapor is an important constituent of the atmosphere. Because of its abundance and its radiative properties it plays an important role for the radiation budget of the atmosphere and has major influence on weather and climate. In this work integrated water vapor (IWV) derived from the measurements of three satellite sensors, GOME, SCIAMACHY and AMSU-B, two ground based sensors, a Fourier-transform spectrometer (FTIR), a microwave radiometer for O3 (RAM) and IWV inferred from GPS zenith path delay (ZPD) measurements, are compared to radio-sonde measurements above Ny Ålesund, 79° N. All six remote sensors exploit different principles and work in different wavelength regions. All remote sensing instruments reproduce the sonde measurements very well and are highly correlated when compared with the radio-sonde measurements. The ground-based FTIR shows very little scatter of about 10%. The GPS performs similar to the FTIR at all times except for very low IWV, where the scatter exceeds 50% of the measured IWV. The other remote sensing instruments show scatter of about 20% (standard deviation). The ground-based RAM performs similar to the satellite instruments, despite the fact that the retrieval of IWV is just a by-product of this ozone sensor.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-10
    Description: Dry-air column-averaged mole fractions of methane (XCH4) retrieved from ground-based solar Fourier transform infrared (FTIR) measurements provide valuable information for satellite validation, evaluation of chemistry-transport models, and source-sink-inversions. In this context, Sussmann et al. (2013) have shown that mid-infrared (MIR) soundings from the Network for the Detection of Atmospheric Composition Change (NDACC) can be combined with near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON) without the need to apply an overall intercalibration factor. However, in spite of efforts to reduce a priori impact, some residual seasonal biases were identified, and the reasons behind remained unclear. In extension to this previous work, which was based on multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong (34.41° S, 150.88° E, 30 m a.s.l.), we now investigate upgraded retrievals with longer temporal coverage and include three additional stations (Ny-Ålesund, 78.92° N, 11.93° E, 20 m a.s.l.; Karlsruhe, 49.08° N, 8.43° E, 110 m a.s.l.; Izaña, 28.31° N, 16.45° W, 2.370 m a.s.l.). Our intercomparison results (except for Ny-Ålesund) confirm that there is no overall bias between MIR and NIR XCH4 retrievals, and all MIR and NIR time series reveal a quasi-periodic seasonal bias for all stations, except for Izaña. We find that dynamical variability causes MIR–NIR differences of up to ~ 30 ppb for Ny-Ålesund, ~ 20 ppb for Wollongong, ~ 18 ppb for Garmisch, and ~ 12 ppb for Karlsruhe. The mechanisms behind this variability are elaborated via two case studies, one dealing with stratospheric subsidence induced by the polar vortex at Ny-Ålesund and the other with a deep stratospheric intrusion event at Garmisch. Smoothing effects caused by the dynamical variability during these events are different for MIR and NIR retrievals depending on the altitude of the perturbation area. MIR retrievals appear to be more realistic in the case of stratospheric subsidence, while NIR retrievals are more accurate in the case of stratosphere-troposphere exchange (STE) in the upper troposphere/lower stratosphere (UTLS) region. About 35% of the FTIR measurement days at Garmisch are impacted by STE, and about 23% of the measurement days at Ny-Ålesund are influenced by polar vortex subsidence. The exclusion of data affected by these dynamical situations resulted in improved agreement of MIR and NIR seasonal cycles for Ny-Ålesund and Garmisch. We found that dynamical variability is a key factor in constraining the accuracy of MIR and NIR seasonal cycles. The only way to avoid this problem is to use more realistic a priori profiles that take these dynamical events into account (e.g. via improved models), and/or to improve the FTIR retrievals to achieve a more uniform sensitivity at all altitudes (possibly including profile retrievals for the TCCON data).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-12
    Description: Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05° N and 77.82° S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1% yr−1. The models simulate an increase of HF of around 1% yr−1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-28
    Description: In September/October 2009, six European ground-based Fourier Transform Spectrometers (FTS) of the Total Carbon Column Observation Network (TCCON) were calibrated for the first time using aircraft measurements. The campaign was part of the Infrastructure for Measurement of the European Carbon Cycle (IMECC) project. During this campaign, altitude profiles of several trace gases and meteorological parameters were taken close to the FTS sites (typically within 1–2 km distance for flight altitudes below 5000 m). Profiles of CO2, CH4, CO and H2O were measured continuously. N2O, H2, and SF6 were later derived from flask measurements. The aircraft data had a vertical coverage ranging from approximately 300 to 13 000 m, corresponding to ~80% of the total atmospheric column seen by the FTS. This study summarizes the calibration results for CH4. The resulting calibration factor of 0.978 ± 0.002 (±1 σ) from the IMECC campaign agreed very well with the results that Wunch et al. (2010) had derived for TCCON instruments in North America, Australia, New Zealand, and Japan using similar methods. By combining our results with the data of Wunch et al. (2010), the uncertainty of the calibration factor could be reduced by a factor of three (compared to using only IMECC or only Wunch et al. (2010) data). A careful analysis of the calibration method used by Wunch et al. (2010) revealed that the incomplete vertical coverage of the aircraft profiles can lead to a bias in the calibration factor. This bias can be compensated with a new iterative approach that we developed. Using this improved method, we derived a significantly lower calibration factor of 0.974 ± 0.002 (±1 σ). This corresponds to a correction of all TCCON CH4 measurements by roughly −7 ppb.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...