ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 309 (1984), S. 135-138 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Over 20 years ago, Dungey8 suggested a model of the Earth's magnetosphere in which he proposed magnetic field reconnection as the major process coupling the magnetosphere to the solar wind and driving magnetospheric convection. Considerable indirect support for this model has subsequently been ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 300 (1982), S. 23-26 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Observations of flux transfer events (FTEs) at the Earth's dayside magnetopause are presented which have plasma and magnetic field signatures reversed in sign from those previously reported. These FTEs are interpreted in terms of localized and transitory reconnection with the spacecraft ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The AMPTE-UKS1 has a perigee of 550 km, apogee of 1.7 Earth radii and period of 43.8 h. In October 1984, apogee was near the noon meridian and the satellite was ideally situated to observe the IMF directly upstream of the Earth's magnetosphere and bow shock. The Imperial College magnetometer was ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 286 (1980), S. 332-333 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ALTHOUGH the correlation between periods of geomagnetic disturbance and the occurrence of auroras had been known since the time of Celcius (1741), the first scientific reference to magnetospheric substorms seems to be found in the accounts of Herrick (1838) and Olmstead (1856) who noted that ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 284 (1980), S. 302-303 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] AT the beginning of September, 1979 US spacecraft Pioneer 11 undertook the first close survey of the planet Saturn, approaching within 21,000 km of the visible cloud-tops. Pioneer 11 was launched in April, 1973 and had previously made the second Jupiter fly-by in December, 1974, one year after ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 361 (1993), S. 424-428 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Figure 1 shows schematically a noon-midnight cross-section of the Earth's magnetosphere, showing the cusps (C). The dashed line is the magnetopause, the current-carrying boundary between the magnetosphere and the shocked solar wind plasma in the magnetosheath (MS). The interplanetary magnetic field ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-30
    Description: In this study we investigate the latitudinal behavior of the azimuthal plasma velocities in the outer magnetosphere of Saturn using the numerical ion moments derived from the measurements of the Cassini Plasma Spectrometer. One of the new results presented is that although these moments display some scatter, a significant positive correlation is found to exist between the azimuthal velocity and the plasma density, such that on average, the higher the density the higher the rotation speed. We also found that both the azimuthal velocity and the density anticorrelate with the magnitude of the radial component of the magnetic field and drop rapidly with increasing distance from the magnetic equator. The azimuthal velocities show periodic behavior with a period near the planetary rotation period, which can also be explained by the strong dependence on magnetic latitude, taking into account the flapping of the magnetodisk. It is thus found that the dense plasma near the magnetic equator rotates around the planet at high speed, while the dilute plasma at higher latitudes in the northern and southern hemispheres rotates significantly slower. The latitudinal gradient observed in the azimuthal speed is suggested to be a direct consequence of the sub-corotation of the plasma in the outer magnetosphere, with highest speeds occurring on field lines at lowest latitudes mapping to the rapidly rotating inner regions of the plasma sheet, and the speed falling as one approaches the lobe, where the field lines are connected to strongly sub-corotating plasma.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-24
    Description: We discuss the properties of Saturn planetary period oscillations (PPOs) deduced from analysis of Saturn kilometric radiation (SKR) modulations by Fischer et al. (2014), and from prior analysis of magnetic field oscillations data by Andrews et al. (2012) and Provan et al. (2013), with emphasis on the post-equinox interval from early 2010 to early 2013. Fischer et al. (2014) characterize this interval as showing single phase-locked periods in the northern and southern SKR modulations observed in polarization-separated data, while the magnetic data generally show the presence of separated dual periods, northern remaining shorter than southern. We show that the single SKR period corresponds to the southern magnetic period early in 2010, segues into the northern period in late 2010, and returns to the southern period in mid-2012, approximately in line with changes in the dominant magnetic oscillation. An exception occurs in mid-February to late August 2011 when two periods are again discerned in SKR data, in good agreement with the ongoing dual periods in the magnetic data. Fischer et al. (2014) discuss this change in terms of a large jump in the southern SKR period related to the Great White Spot storm, which the magnetic data show is primarily due instead to a reappearance in the SKR data of the ongoing southern modulation in a transitory interval of resumed southern dominance. In the earlier interval from early April 2010 to mid-February 2011 when Fischer et al. (2014) deduce single phase-locked periods, we show unequivocal evidence in the magnetic data for the presence of separated dual oscillations of approximately equal amplitude. We suggest that the apparent single SKR periods result from a previously reported phenomenon in which modulations associated with one hemisphere appear in polarization-separated data associated with the other. In the following interval, mid-August 2011 to early April 2012, when Fischer et al. (2014) again report phase-locked northern and southern oscillations, no ongoing southern oscillation of separate period is discerned in the magnetic data. However, the magnetic amplitude data show that if a phase-locked southern oscillation is indeed present, its amplitude must be less than ~ 5–10 % of the northern oscillation.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-27
    Description: A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF) measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS) near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-28
    Description: We consider the magnetic interconnection of Saturn's northern and southern polar regions controlled by the interplanetary magnetic field (IMF), studying in particular the more complex and interesting case of southward IMF, when the Kronian magnetospheric magnetic field structure is the most twisted. The simpler case of northward IMF is also discussed. Knowledge of the magnetospheric magnetic field structure is very significant, for example, for investigation of the electric fields and field-aligned currents in Saturn's environment, particularly those which cause the auroral emissions. Here we modify the paraboloid magnetospheric magnetic field model employed in previous related studies by including higher multipole terms in Saturn's internal magnetic field, required for more detailed considerations of inter-hemispheric conjugacy, together with inclusion of a spheroidal boundary at the ionospheric level. The model is employed to map Southern Hemisphere auroral regions observed by the Hubble Space Telescope (HST) in 2008 under known IMF conditions to both the equatorial plane and the northern ionosphere. It is shown that the brightest auroral features map typically to the equatorial region between the central ring current and the outer magnetosphere, and that auroral features should be largely symmetric between the two hemispheres, except for a small poleward displacement and latitudinal narrowing in the Northern Hemisphere compared with the Southern Hemisphere due to the quadrupole field asymmetry. The latter features are in agreement with the conjugate auroras observed under near-equinoctial conditions in early 2009, when IMF data are not available.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...