ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (8)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (5)
  • 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics  (3)
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (3)
  • E31
  • J24
  • Elsevier  (17)
  • Copernicus  (2)
Collection
Years
  • 1
    Publication Date: 2020-11-30
    Description: Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO2 fluxed into magma. An important outcome of this process lies in the effect of external CO2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.
    Description: Published
    Description: 84-95
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: stable-isotope ; magma geochemistry ; CO2-degassing ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A review of available and new isotopic data on rocks from Mt. Vesuvius together with geophysical and mineralogical data allow us to define a ‘deep’ complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate, and to constrain a thermal model, which describes the history and present state of the reservoir and its surrounding rocks. The top of the reservoir is located at about 8 km depth, and it extends discontinuously down to 20 km depth. The reservoir is hosted in densely fractured continental crustal rocks, where magmas and crust can interact, and, according to thermal modeling results, has been fed more than once in the last 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the ‘deep’ reservoir magmas rise to form ‘shallow’ magma chambers at different depths, as already known in the literature, where they can undergo low-pressure differentiation and mixing and feed the volcanic activity.
    Description: Published
    Description: 1-12
    Description: partially_open
    Keywords: Magmatic system ; Crustal contamination ; Thermal modeling ; Isotope geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 546764 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Ischia volcano, in Central Italy, has long been known for its copious surface hydrothermal manifestations, signs of a pervasive circulation of hot fluids in the subsurface. Because of the significant chemical heterogeneity of fumarolic gas discharges and hot spring discharges, evidences of a complex hydrothermal setting, a definite model of fluid circulation at depth is currently unavailable, in spite of the several previous efforts. Here, we report on the chemical and isotopic composition of 120 groundwater samples, collected during several sampling surveys from 2002 to 2007. The acquired data suggest that the composition of surface manifestations reflect contributions from meteoric water, sea water, and thermal fluids rising from two distinct hydrothermal reservoir, with equilibrium temperatures of respectively ~150 °C and ~270 °C, and depths of 150–300 m and N300 m (but possibly N1000 m). We also make use of an isotopic characterization of the dissolved gas phase in thermal waters to demonstrate that the Ischia hydrothermal system is currently supplied by a deep-rising gas component (DGC), characterized by CO2 ~97.7±1.2 vol.% (on a water-free basis), δ13CCO2=−3.51±0.9‰, and helium isotopic ratio of about 3.5 Ra (3He/4He ratio normalized to the air ratio, Ra), likely magmatic in origin. An assessment of the thermal budget for Ischia hydrothermal system is also presented, in the attempt to derive a first estimate of the size and rate of degassing of the magmatic reservoir feeding the gas emissions. We calculate that a heat flow of about 153–222 MW presently drives hydrothermal circulation on the island, which we suggest is supplied in convective form (e.g., by the ascent of a high-T magmatic vapour phase) by complete degassing of 2.2–3.3 107 m3 yr−1 of trachytic magma (with ~2.1 wt.% dissolved H2O content). If extrapolated to entire period of quiescence lasting since the Arso eruption in 1302 A.D., this volume corresponds to 1.6–2.3 1010 m3 of magma degassed in about 700 years of quiescent activity.
    Description: Published
    Description: 133–159
    Description: JCR Journal
    Description: reserved
    Keywords: Ischia ; hydrothermal systems ; thermal groudwaters ; thermal and volatile budget ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Description: Published
    Description: 219-230
    Description: partially_open
    Keywords: Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas–water–rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 mg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at Vulcano Island and the Phlegrean Fields. In both areas the dissolution of As-bearing sulphides is likely to be the main source of As. Mature Cl-rich groundwaters, representative of the discharge from the deep thermal reservoirs, are typically enriched in As with respect to SO4-rich ‘‘steam heated groundwaters’’. In the HCO3 groundwaters recovered at Vesuvius and Etna, aqueous As cycling is limited by the absence of high-temperature interactions and by high-Fe content of the host rocks, resulting in oxidative As adsorption. Thermodynamic modelling suggests that reducing H2S-rich groundwaters are in equilibrium with realgar, whereas in oxidising environments over-saturation with respect to Fe oxyhydroxides is indicated. Under these oxidising conditions, As solubility decreases controlled by As co-precipitation with, or adsorption on, Fe oxy-hydroxides. Consistent with thermodynamic considerations, As mobility in the studied areas is enhanced in intermediate redox environments, where both sulphides and Fe hydroxides are unstable.
    Description: Published
    Description: 1283–1296
    Description: partially_open
    Keywords: Hydrogeochemistry ; Arsenic ; volcanic groundwaters ; speciation ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 703456 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Active volcanoes emit considerable amounts of contaminants such as As, Se and V. Mount Etna is the biggest volcano of Europe and an excellent geochemical site to study water-soil processes. Due to its volcanic activity, the rainwater has a strong compositional gradient, both in time and space. At present, the behaviour of trace elements in the soils around Mt Etna is poorly understood. To determine the influence of the rainwater pH on the potential mobilization of geogenic pollutants, batch experiments have been performed with synthetic rainwater for 25 soils collected along the flanks of the volcano. Our results show that: i) The maximum concentrations in the leaching solutions are higher for acid rain than for neutral rain (e.g. 7.7 vs 1.3 mg/L for Se). ii) With neutral rain conditions the soils upwind from the volcano have higher concentrations of Se than those downwind (up to 1.3 mg/L compared to ≤0.3 mg/L for the other samples). This trend is less clear for As and V. iii) For soils collected from 2 to 10 km downwind of the craters, Se concentrations in acid rain leachates decrease one order of magnitude with increasing distance. A similar pattern is also observed upwind from the volcano. For As and V no clear relationship between concentrations and location with respect to the volcanic craters is observed. Both i) and ii) result in a low pH dependence for samples upwind from the volcano. The biggest difference between acid and neutral leaching for As and V is observed for a sample 2 km downwind from the craters. The observed patterns are influenced by potential controlling factors, such as organic matter content, total concentrations, mineralogy, influence of the volcanic plume, etc. Our results have implications for the chemical composition of the Etnean aquifer, the only water resource to the one million inhabitants around Mt Etna, as well as for the bioavailability and potential toxicity through agricultural activities, essential to the local economy.
    Description: Published
    Description: Davos, Switzerland
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: volcanic soils ; selenium ; arsenic ; vanadium ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture and composition. This is particularly evident in small scale eruptions, characterized by a strong variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue for the correct identification of the tephra. The paper presents morphological, textural and compositional data on the products of an ash eruption from Middle Age activity of Vesuvius, to demonstrate the information that can be extracted from the proposed type of analysis. Juvenile fragments from five ash layers throughout the studied products were randomly hand-picked and fully characterized in terms of external morphology, particle outline parameterization, groundmass texture and glass composition. Statistical analysis of shape parameters characterized groups of fragments that can be compared with the other textural and physical parameters. The main result is that the data do not show important cross-correlation so suggesting that all of these parameters, together with accurate field data are needed for the complete fingerprinting of a tephra bed. We suggest that this approach is especially important for characterizing the products of small scale, compositionally undistinguishable, eruptions and represents the necessary step to deal with before going into more detailed compositional analyses.
    Description: Published
    Description: 277-287
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: tephrostratigraphic methods ; shape parameters ; groundmass texture ; mid-intensity eruptions ; ash deposits ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Oxygen isotopes of both rainwater and groundwater samples from Mt Etna were used to obtain information on recharge areas, flow paths, and the origin of wet air masses. Oxygen isotope composition was determined in rainwater samples collected for a period of 3 years (October 1997–October 2000), in 11 rain-gauges distributed along the flanks of Mt Etna from sea level to 2900 m of altitude. Values ranged from 213.8 to þ 1.9‰, the lowest values being measured at higher altitudes and/or during cooler periods. For rain-gauges located from sea level up to 1000 m altitude, volume weighted values defined an isotopic gradient of 22.7‰/km, which is in the range observed in the Mediterranean area. Higher-altitude gauges yielded a much lower gradient (20.6‰/km), probably due to the fact that vapour condensing at higher altitudes was mixed with an 18O-rich volcanic component deriving from the huge vapour output of the summit craters. The oxygen isotope composition of about 210 groundwater samples collected all around the volcano ranged from 29.3 to 25.0‰. The higher values measured on the eastern flank indicated that recharge occurs at lower altitudes on this flank. The low variability (0.30–0.65‰) of the monthly values gathered from 14 groundwater sampling points over a period of 2 years indicates that the groundwater system is isotopically well mixed. Some long-term trends may be explained by variations in annual recharge, due to the prevalent isotope composition of wet air masses.
    Description: National Group for Volcanology (G.N.V.), Italy.
    Description: Published
    Description: 282–299
    Description: partially_open
    Keywords: Isotope hydrology ; d18O ; Groundwater ; Rainwater ; Mt Etna ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 751835 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...