ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (9)
  • Elsevier  (6)
  • Copernicus Publications (EGU)  (3)
  • Copernicus
  • 1
    Publication Date: 2019-01-23
    Description: Eden and Olbers have discussed the relationship between bottom pressure torque and bolus velocity in the western boundary current using the vertically truncated BARBI model approach. Here we revisit this issue using the much simpler residual mean framework. The central role played by a density equation that is linearised about a state of rest is discussed, as well as mechanisms required to maintain the baroclinicity of the western boundary current. We conclude that in the framework being considered by Eden and Olbers, frictional processes must play an important role in the western boundary current dynamics, otherwise the baroclinicity of the current is completely removed by the cross-front mixing effect of the eddies. We also derive the form of the Stommel equation obtained by Eden and Olbers in a manner which clarifies the approximations made by these authors. We argue that for their analysis to be valid, the flow must be concentrated in a shallow layer compared to the ocean depth, there must be no density structure at the sea floor, and any overturning circulation, whether directly wind-driven or as a part of the global thermohaline circulation, must be much smaller than the western boundary current transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-21
    Description: Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere is based on observations and modeling studies using low resolution oceanic emission scenarios derived from top down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1° × 1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol I yr−1 for CH3I (Robust Fit/Ordinary Least Square regression technique). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic region. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An underrepresentation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom up emission estimate and top down approaches
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075–1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-08
    Description: This paper describes methods of obtaining improved estimates of long-term sea level trends for the British Isles. This is achieved by lengthening the sea level records where possible, then removing known sources of variability, and then further adjusting for datum errors that are revealed by the previous processes after verification using metadata from archived sources. Local sea level variability is accounted for using a tide and surge model. Far field variability is accounted for using a “common mode”. This combination reduces the residual variability seen at tide gauges around the coast of the British Isles to the point that a number of previously unrecognised steps in individual records become apparent, permitting a higher level of quality control to be applied. A comprehensive data archaeology exercise was carried out which showed that these step-like errors are mostly coincident with recorded site-specific changes in instrumentation, and that in many cases the periodic tide gauge calibration records can be used to quantify these steps. A smaller number of steps are confirmed by “buddy-checking” against neighbouring tide gauges. After accounting for the observed steps, using levelling information where possible and an empirical fit otherwise, the records become significantly more consistent. The steps are not found to make a large difference to the trend and acceleration observed in UK sea level overall, but their correction results in much more consistent estimates of first order (Sea Level Rise) and second order (Sea Level Acceleration) trends over this 60-year period. We find a mean rate of sea level rise of 2.39 ± 0.27 mm yr−1, and an acceleration of 0.058 ± 0.030 mm yr−2 between Jan. 1958 and Dec. 2018. The cleaner dataset also permits us to show more clearly that the variability other than that derived from local meteorology is indeed consistent around the UK, and relates to sea level changes along the eastern boundary of the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 501 . pp. 54-64.
    Publication Date: 2021-02-22
    Description: Seagrass beds provide a wealth of ecosystem services that benefit society (e.g., habitat and feeding ground for juvenile fisheries species), but the Anthropocene has seen to a global decline of these productive habitats. Many temperate estuaries are becoming eutrophic due to horticultural, agricultural, and urban nutrient run off, but the role of this enrichment in seagrass decline is not fully understood. In a multi-site manipulative field experiment (Tauranga Harbour, New Zealand; 37°S, 176°E), we elevated pore water nitrogen (N) concentrations (mimicking the consequences of long-term eutrophication) to examine effects on seagrass meadows. At six intertidal seagrass sites with differing sediment properties and macrofaunal communities, slow release urea fertiliser (200 g N m−2) was buried in 1 m2 plots at the start of the peak growing season (early summer). After 60 d, we measured several seagrass morphological variables (cover, leaf length and width, and above and below ground biomass), sediment properties, and macrofauna community structure. Results demonstrate that the resilience of seagrass meadows to N enrichment is highly site-dependent. Two of the six sites showed significant declines in a multivariate indicator of seagrass morphology, driven by marked reductions in seagrass cover and leaf length (of up to 78%). Whereas, other sites appeared resilient to N enrichment. It was expected that these site-specific responses would be correlated with changes in sediment properties that alter nutrient processing capacity (permeability and biogeochemistry). However, site-specific responses were instead correlated with the ambient seagrass biomass and macrofaunal diversity. Sites with low ambient seagrass biomass and macrofaunal diversity were less resilient to enrichment. These results highlight that seagrass biomass could be a good indicator of resilience to nutrient enrichment, and the biomass where resilience is lost may lie between 140 and 285 g DW m−2. This study contributes knowledge that is required for predicting and mitigating future impacts of estuarine eutrophication on seagrass ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Absolute abundances (concentrations) of dinoflagellate cysts are often determined through the addition of Lycopodium clavatum marker-grains as a spike to a sample before palynological processing. An interlaboratory calibration exercise was set up in order to test the comparability of results obtained in different laboratories, each using its own preparation method. Each of the 23 laboratories received the same amount of homogenized splits of four Quaternary sediment samples. The samples originate from different localities and consisted of a variety of lithologies. Dinoflagellate cysts were extracted and counted, and relative and absolute abundances were calculated. The relative abundances proved to be fairly reproducible, notwithstanding a need for taxonomic calibration. By contrast, excessive loss of Lycopodium spores during sample preparation resulted in non-reproducibility of absolute abundances. Use of oxidation, KOH, warm acids, acetolysis, mesh sizes larger than 15 μm and long ultrasonication (N1 min) must be avoided to determine reproducible absolute abundances. The results of this work therefore indicate that the dinoflagellate cyst worker should make a choice between using the proposed standard method which circumvents critical steps, adding Lycopodium tablets at the end of the preparation and using an alternative method.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The reaction between ozone and iodide at the sea surface is now known to be an important part of atmospheric ozone cycling, causing ozone deposition and the release of ozone-depleting reactive iodine to the atmosphere. The importance of this reaction is reflected by its inclusion in chemical transport models (CTMs). Such models depend on accurate sea surface iodide fields, but measurements are spatially and temporally limited. Hence, the ability to predict current and future sea surface iodide fields, i.e. sea surface iodide concentration on a narrow global grid, requires the development of process-based models. These models require a thorough understanding of the key processes that control sea surface iodide. The aim of this study was to explore if there are common features of iodate-to-iodide reduction amongst diverse marine phytoplankton in order to develop models that focus on sea surface iodine and iodine release to the troposphere. In order to achieve this, rates and patterns of changes in inorganic iodine speciation were determined in 10 phytoplankton cultures grown at ambient iodate concentrations. Where possible these data were analysed alongside results from previous studies. Iodate loss and some iodide production were observed in all cultures studied, confirming that this is a widespread feature amongst marine phytoplankton. We found no significant difference in log-phase, cell-normalised iodide production rates between key phytoplankton groups (diatoms, prymnesiophytes including coccolithophores and phaeocystales), suggesting that a phytoplankton functional type (PFT) approach would not be appropriate for building an ocean iodine cycling model. Iodate loss was greater than iodide formation in the majority of the cultures studied, indicating the presence of an as-yet-unidentified “missing iodine” fraction. Iodide yield at the end of the experiment was significantly greater in cultures that had reached a later senescence stage. This suggests that models should incorporate a lag between peak phytoplankton biomass and maximum iodide production and that cell mortality terms in biogeochemical models could be used to parameterise iodide production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Reaction with iodide (I-) at the sea surface is an important sink for atmospheric ozone, and causes sea-air emission of reactive iodine which in turn drives further ozone destruction. To incorporate this process into chemical transport models, improved understanding of the factors controlling marine iodine speciation, and especially sea-surface iodide concentrations, is needed. The oxidation of I- to iodate (IO3-) is the main sink for oceanic I-, but the mechanism for this remains unknown. We demonstrate for the first time that marine nitrifying bacteria mediate I- oxidation to IO3-. A significant increase in IO3- concentrations compared to media-only controls was observed in cultures of the ammonia-oxidising bacteria Nitrosomonas sp. (Nm51) and Nitrosoccocus oceani (Nc10) supplied with 9-10 mM I-, indicating I- oxidation to IO3-. Cell-normalised production rates were 15.69 (+/- 4.71) fmol IO3- cell(-1) d(-1) for Nitrosomonas sp., and 11.96 (+/- 6.96) fmol IO3- cell(-1) d(-1) for Nitrosococcus oceani, and molar ratios of iodate-to-nitrite production were 9.2 +/- 4.1 and 1.88 +/- 0.91 respectively. Preliminary experiments on nitrite-oxidising bacteria showed no evidence of I- to IO3- oxidation. If the link between ammonia and I oxidation observed here is representative, our ocean iodine cycling model predicts that future changes in marine nitrification could alter global sea surface I fields with potential implications for atmospheric chemistry and air quality.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights • Tephra are abundant in NE North America, with 36 unique units deposited between ∼14,000 and the present day. • Source volcanoes are in the Cascades, Alaska, Kamchatka, Kuriles and potentially Japan. • Updated Bayesian modelled ages are presented for key proximal correlative eruptions and newly described tephra. • The tephra link paleoenvironmental records from this region to the Far East, Greenland and Europe. • Correlated source eruption volumes vary widely; this alone cannot explain recorded ash distribution trends. Lakes and bogs in northeastern North America preserve tephra deposits sourced from multiple volcanic systems in the Northern Hemisphere. However, most studies of these deposits focus on specific Holocene intervals and the latest Pleistocene, providing snapshots rather than a full picture. We combine new data with previous work, supplemented by a broad review of the characteristics and ages of potential source regions and volcanoes, to develop the first composite tephrostratigraphic framework covering the last ∼14,000 years for this region. We report new cryptotephra records from three ombrotrophic peat bogs—Irwin Smith (Michigan), Bloomingdale (New York), and Sidney Bog (Maine)—as well as new analyses and age models from previously reported sites, Nordan's Pond Bog (Newfoundland) and Thin-Ice Pond (Nova Scotia). A new tephra (Iliinsky) from the NGRIP and GRIP ice cores is also presented as it can be correlated to new data from these terrestrial records and helps validate radiocarbon age models. We identify 21 new tephra in addition to the 15 already known, several of which cover the entire region – the White River Ash east, Newberry Pumice, Ruppert (NDN-230), and Mazama. For the first time we find Mount St. Helens Yn (ca. 3660 cal yr BP) and a set P tephra (∼3000–2550 cal yr BP), and confirm the presence of Jala Pumice from Volcan Ceboruco, Mexico, and KS1 from Ksudach volcano, Kamchatka. We describe new “ultra-distal” tephra, including the early Holocene KS2 eruption, and propose correlations to volcanoes Iliinsky and Shiveluch of Kamchatka, and Ushishir of the Kurile Islands. Not all of these tephra represent large eruptions, with several plausible correlations to sub-Plinian events. Using Bayesian age-modeling, we present new age estimates for the newly described tephra, for tephra with previously poor age control, and for several proximal correlatives. Overall, we demonstrate northeastern North America's importance for providing transcontinental linkages between paleoenvironmental records and providing insights into ash distribution from different styles and sizes of eruptions.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...