ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-03
    Description: Sensors, Vol. 18, Pages 2913: DroneTank: Planning UAVs’ Flights and Sensors’ Data Transmission under Energy Constraints Sensors doi: 10.3390/s18092913 Authors: Runqun Xiong Feng Shan We consider an Unmanned Aerial Vehicle (UAV, also known as drone) as an aerial sink to travel along a natural landscape or rural industrial linear infrastructure to collect data from deployed sensors. We study a joint schedule problem that involves flight planning for the drone and transmission scheduling for sensors, such that the maximum amount of data can be collected with a limited individual energy budget for the UAV and the sensors, respectively. On one hand, the flight planning decides the flight speed and flight path based on sensor locations, energy budgets, and the transmission schedule. On the other hand, the transmission schedule decides for each sensor when to deliver data and what transmission power to use based on the energy budgets and flight plan. By observing three import optimality properties, we decouple the joint problem into two subproblems: drone flight planning and sensor transmission scheduling. For the first problem, we propose a dynamic programming algorithm to produce the optimal flight planning. For the second problem, with a flight plan as input, we introduce a novel technique (water-tank), which together with dynamic programming, is the key to achieve an optimal transmission schedule that maximizes data collection. Simulations show that the separately determined flight plan and transmission schedule are near-optimal for the original joint problem.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-21
    Description: Sensors, Vol. 17, Pages 2958: Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems Sensors doi: 10.3390/s17122958 Authors: Weiwei Wu Huafan Li Feng Shan Yingchao Zhao Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-24
    Description: Sensors, Vol. 18, Pages 2018: On Maximizing the Throughput of Packet Transmission under Energy Constraints Sensors doi: 10.3390/s18072018 Authors: Weiwei Wu Guangli Dai Yan Li Feng Shan More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...