ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-01
    Description: The Mesozoic fore-arc of the Antarctic Peninsula is exposed along its west coast. On Adelaide Island, a 2–3 km succession of turbiditic coarse sandstones and volcanic rocks is exposed. Four U–Pb (zircon) ages are presented here that, in combination with a new stratigraphy, have permitted a robust chrono- and lithostratigraphy to be constructed, which in turn has allowed tentative correlations to be made with the Fossil Bluff Group of Alexander Island, where the ‘type’ fore-arc sequences are described. The lithostratigraphy of Adelaide Island includes the definition of five volcanic/sedimentary formations. The oldest formation is the Buchia Buttress Formation (149.5 ± 1.6 Ma) and is correlated with the Himalia Ridge Formation of Alexander Island. The sandstone–conglomerate dominated succession of the Milestone Bluff Formation (113.9 ± 1.2 Ma) is tentatively correlated with the Pluto Glacier Formation of Alexander Island. Three dominantly volcanic formations are recognized on Adelaide Island, akin to the volcanic rocks of the Alexander Island Volcanic Group; the Mount Liotard Formation is formed of 2 km of basaltic andesite lavas, whilst the Bond Nunatak Formation is also dominated by basaltic andesite lavas, but interbedded with volcaniclastic rocks. The Reptile Ridge Formation has been dated at 67.6 ± 0.7 Ma and is characterized by hydrothermally altered rhyolitic crystal-lithic tuffs. Tentative correlations between Adelaide Island and Alexander Island preclude the two areas forming part of distinct terranes as has been suggested previously, and a proximal source for volcaniclastic sediments also indicates an exotic terrane origin is unlikely.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-12-01
    Description: Data collected on four large-scale surveys around the subantarctic island of South Georgia provide information on the variability in the distribution of chlorophyll and inorganic nutrients during the austral summer and winter. During three summer surveys, surface water cholorophyll and nutrient concentrations were highly patchy over scales ranging from a few to hundreds of kilometres. The highest measurement of chlorophyll a was 8 mg m−3 and a wide range of nutrient concentrations were found; 5–32 mmol m−3 NO3−N, 1.1–2.2 mmol m−3 PO4−P and 8–60 mmol m−3 Si(OH)4−Si. In winter, chlorophyll and nutrient levels were far more uniform, with chlorophyll concentrations lower and nutrient concentrations generally higher than in summer. The spatial variability in nutrient concentrations was due to a variety of factors acting over a range of scales, however biological processes appeared most important in creating the mesoscale patchiness around the island. Although phytoplankton abundance and nutrient concentrations were not directly correlated, the scales of variability were clearly similar.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-09-21
    Description: Dating the pre-Middle Ordovician metavolcanic rocks and metagranites of the Ollo de Sapo Domain has, historically, been difficult because of the small compositional variation, the effects of the Variscan orogeny and, as revealed in this paper, the unusually high fraction of inherited zircon components. The first reliable zircon data (U–Pb ion microprobe and Pb–Pb stepwise evaporation) indicate that the Ollo de Sapo volcanism spanned 495±5 Ma to 483±3 Ma, and was followed by the intrusion of high-level granites from 483±3 Ma to 474±4 Ma. In both metavolcanic rocks and metagranites, no less than 70–80% of zircon grains are either totally Precambrian or contain a Precambrian core overgrown by a Cambro-Ordovician rim. About 80–90% of inherited zircons are Early Ediacaran (602–614 Ma) and derived from calc-alkaline intermediate to felsic igneous rocks generated at the end of the Pan-African arc–continent collision. In the Villadepera region, located to the west, both the metagranites and metavolcanic rocks also contain Meso-Archaean zircons (3.0–3.2 Ga) which ultimately originated from the West African Craton. In the Hiendelaencina region, located to the east, both the metagranites and metavolcanic rocks lack Meso-Archaean zircons, but they have two different inherited zircon populations, one Cryogenian (650–700 Ma) and the other Tonian (850–900 Ma), which suggest older-than-Ediacaran additional island-arc components. The different proportion of source components and the marked variation of the 87Sr/86Srinit. suggest, at least tentatively, that the across-arc polarity of the remnants of the Pan-African arc of Iberia trended east–west (with respect to the current coordinates) during Cambro-Ordovician times, and that the passive margin was situated to the west.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-18
    Description: The palaeoproterozoic Svecofennian orogen in southern Finland contains a number of orogenic gold occurrences. The Jokisivu gold deposit, comprising auriferous quartz veins, is hosted by syn-tectonic quartz diorites to gabbros. Mineralization occurs in approximately WNW–ESE- and WSW–ENE-trending shear zones, which probably branch from regional-scale NW–SE-trending shears. Ore zone fabrics post-date regional-scale folding and the metamorphic peak, and can be correlated with late Svecofennian regional shear tectonics (D6; 1.83–1.78 Ga), indicating that mineralization formed during the late stages of orogenic evolution. SIMS and TIMS U–Pb dating of three samples place tight constraints on the age of gold mineralization. Zircons from both unaltered and altered quartz diorites have ages of 1884±4 Ma and 1881±3 Ma, respectively. These are interpreted as the crystallization age of the rock and as providing the maximum age for mineralization. Zircon rims from an altered quartz diorite from the ore zone give ages of c. 1802±15 Ma, which overlap with the 1801±18 Ma titanite (mean Pb–Pb) age from the ore zone. The ages are similar to the age of the pegmatite dyke that cuts the ore zone and whose zircon age of 1807±3 Ma is approximately the same as the 1791±2 Ma monazite age (TIMS) giving the minimum age of the gold mineralization. The mineralization and its structural framework can be correlated with coeval late Svecofennian shear tectonics related to WNW–ESE-oriented shortening in southern Finland. Extensive c. 1.8 Ga granite magmatism, shear zone development and associated gold mineralization are of regional importance also in the northern and western Fennoscandian Shield (Finnish Lapand and Sweden). A Cordilleran-type setting can explain the widespread distribution of magmatism and gold mineralization associated with shortening, as well as the required heat source triggering hydrothermal fluid flow along shear zones.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-10-27
    Description: Ion microprobe (SIMS) dating of zircon from the Miranda do Douro orthogneiss, Central Iberian Zone, Hercynian Iberian belt, defines an Early Ordovician U–Pb age of 496.0 ± 2.6 Ma (95 % conf., MSWD = 1.14) for magmatic zircon crystallization in its granitic protolith. The age contrasts with an earlier, conventional (ID-TIMS) U–Pb zircon age of 618 ± 9(95 % conf.) Ma, now thought to be an artefact of the complex zircon population. Individual SIMS ages for zircon from the rock range from 2700 to 180 Ma and comprise inherited and magmatic zircon, both concordant and common Pb-enriched, and younger, reset ages. The ID-TIMS study seems to have misinterpreted this heterogeneous population as a cogenetic suite consisting of magmatic zircon and its age-reset equivalents produced by recent Pb loss. The 496 ± 3 Ma SIMS age represents the weighted average for 26 magmatic zircon domains located by careful inspection of cathodoluminescence, secondary electron and optical microscopy images of ∼ 700 individual zircon crystals. Inherited zircon is widespread, ranging in age from 2700 to 550 Ma, with age clusters, which are statistically indistinguishable from those known from pre-Hercynian granitic basement material elsewhere in the Central Iberian Zone. Including the present age information, 582 ± 4 Ma (95 % conf., MSWD = 1.02, n = 13) and 619 ± 9 Ma (95 % conf., MSWD = 0.93, n = 7) appear as prevailing inherited zircon age components in basement intrusions in the Central Iberian Zone.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...